128
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Sortilin and Homocysteine as Potential Biomarkers for Coronary Artery Diseases

ORCID Icon, & ORCID Icon
Pages 6167-6176 | Published online: 27 Sep 2021

References

  • Badimon L, Storey RF, Vilahur G. Update on lipids, inflammation and atherothrombosis. Thromb Haemost. 2011;105(S 06):S34–S42. doi:10.1160/THS10-11-0717
  • Baños-González MA, Anglés-Cano E, Cardoso-Saldaña G, et al. Lipoprotein (a) and homocysteine potentiate the risk of coronary artery disease in male subjects. Circ J. 2012:1204161700. doi:10.1253/circj.CJ-12-0039
  • von Scholten BJ, Reinhard H, Hansen TW, et al. Additive prognostic value of plasma N-terminal pro-brain natriuretic peptide and coronary artery calcification for cardiovascular events and mortality in asymptomatic patients with type 2 diabetes. Cardiovas Diabetol. 2015;14(1):59. doi:10.1186/s12933-015-0225-0
  • Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN. The metabolism and significance of homocysteine in nutrition and health. Nutr Metab. 2017;14(1):1–12. doi:10.1186/s12986-017-0233-z
  • Gauthier GM, Keevil JG, McBride PE. The association of homocysteine and coronary artery disease. Clin Cardiol. 2003;26(12):563–568. doi:10.1002/clc.4960261204
  • Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202. doi:10.1136/bmj.325.7374.1202
  • Schaffer A, Verdoia M, Cassetti E, et al. Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb Res. 2014;134(2):288–293. doi:10.1016/j.thromres.2014.05.025
  • Vivona N, Bivona G, Noto D, et al. C-reactive protein but not soluble CD40 ligand and homocysteine is associated to common atherosclerotic risk factors in a cohort of coronary artery disease patients. Clin Biochem. 2009;42(16–17):1713–1718. doi:10.1016/j.clinbiochem.2009.08.014
  • Boekholdt SM, Kastelein J. C-reactive protein and cardiovascular risk: more fuel to the fire. Lancet. 2009;375(9709):95–96. doi:10.1016/S0140-6736(09)62098-5
  • Kumakura H, Fujita K, Kanai H, et al. High-sensitivity C-reactive protein, lipoprotein (a) and homocysteine are risk factors for coronary artery disease in Japanese patients with peripheral arterial disease. J Atheroscler Thromb. 2014:25478. doi:10.5551/jat.25478
  • Seo SM, Baek SH, Jeon HK, et al. Correlations between the level of high-sensitivity C-reactive protein and cardiovascular risk factors in Korean adults with cardiovascular disease or diabetes mellitus: the CALLISTO study. J Atheroscler Thromb. 2013;20(7):616–622. doi:10.5551/jat.16089
  • Iribarren C, Chandra M, Rana JS, et al. High-sensitivity cardiac troponin I and incident coronary heart disease among asymptomatic older adults. Heart. 2016;102(15):1177–1182. doi:10.1136/heartjnl-2015-309136
  • Omland T, Pfeffer MA, Solomon SD, et al. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61(12):1240–1249. doi:10.1016/j.jacc.2012.12.026
  • Jia X, Sun W, Hoogeveen RC, et al. High-sensitivity troponin I and incident coronary events, stroke, heart failure hospitalization, and mortality in the ARIC study. Circulation. 2019;139(23):2642–2653. doi:10.1161/CIRCULATIONAHA.118.038772
  • Dube JB, Johansen CT, Hegele RA. Sortilin: an unusual suspect in cholesterol metabolism: from GWAS identification to in vivo biochemical analyses, sortilin has been identified as a novel mediator of human lipoprotein metabolism. Bioessays. 2011;33(6):430–437. doi:10.1002/bies.201100003
  • Kjolby M, Andersen OM, Breiderhoff T, et al. Sort1, encoded by the cardiovascular risk locus 1p13. 3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12(3):213–223. doi:10.1016/j.cmet.2010.08.006
  • Ogawa K, Ueno T, Iwasaki T, et al. Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors. Atherosclerosis. 2016;249:110–115. doi:10.1016/j.atherosclerosis.2016.03.041
  • Strong A, Rader DJ. Sortilin as a regulator of lipoprotein metabolism. Curr Atheroscler Rep. 2012;14(3):211–218. doi:10.1007/s11883-012-0248-x
  • Kjolby M, Nielsen MS, Petersen CM. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease. Curr Atheroscler Rep. 2015;17(4):18. doi:10.1007/s11883-015-0496-7
  • Gao A, Cayabyab FS, Chen X, et al. Implications of sortilin in lipid metabolism and lipid disorder diseases. DNA Cell Biol. 2017;36(12):1050–1061. doi:10.1089/dna.2017.3853
  • Patel KM, Strong A, Tohyama J, et al. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res. 2015;116(5):789–796. doi:10.1161/CIRCRESAHA.116.305811
  • Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51(3):606. doi:10.1016/S0002-9149(83)80105-2
  • Elasfar A, Hekal S, ElGendy E, Abdulaal M, Elsokkary H, Ashmawy M. Assessment of left and right atrial geometrical changes in patients with stable coronary artery disease: left and right atrial strain and strain rate imaging study. Egypt Heart J. 2018;70(2):101–106. doi:10.1016/j.ehj.2018.02.003
  • Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 1967;62(318):399–402. doi:10.1080/01621459.1967.10482916
  • Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):13. doi:10.21037/atm.2016.06.33
  • De Luca G, Verdoia M, Suryapranata H. Benefits from intracoronary as compared to intravenous abciximab administration for STEMI patients undergoing primary angioplasty: a meta-analysis of 8 randomized trials. Atherosclerosis. 2012;222(2):426–433. doi:10.1016/j.atherosclerosis.2012.02.041
  • De Luca G, Ernst N, Van’t Hof AW, et al. Predictors and clinical implications of early reinfarction after primary angioplasty for ST-segment elevation myocardial infarction. Am Heart J. 2006;151(6):1256–1259. doi:10.1016/j.ahj.2005.06.047
  • De Luca G, Gibson CM, Bellandi F, et al. Diabetes mellitus is associated with distal embolization, impaired myocardial perfusion, and higher mortality in patients with ST-segment elevation myocardial infarction treated with primary angioplasty and glycoprotein IIb-IIIa inhibitors. Atherosclerosis. 2009;207(1):181–185. doi:10.1016/j.atherosclerosis.2009.03.042
  • De Luca G, Van’t Hof AW, Ottervanger JP, et al. Ageing, impaired myocardial perfusion, and mortality in patients with ST-segment elevation myocardial infarction treated by primary angioplasty. Eur Heart J. 2005;26(7):662–666. doi:10.1093/eurheartj/ehi110
  • McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56(1):111.
  • Clarke R, Daly L, Robinson K, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. New Engl J Med. 1991;324(17):1149–1155. doi:10.1056/NEJM199104253241701
  • Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. MTHFR 677C→ T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002;288(16):2023–2031. doi:10.1001/jama.288.16.2023
  • Lee B-J, Lin P-T, Liaw Y-P, Chang S-J, Cheng C-H, Huang Y-C. Homocysteine and risk of coronary artery disease: folate is the important determinant of plasma homocysteine concentration. Nutrition. 2003;19(7–8):577–583. doi:10.1016/S0899-9007(02)01098-5
  • Clarke R, Bennett DA, Parish S, et al. Homocysteine and coronary heart disease: meta-analysis of MTHFR case-control studies, avoiding publication bias. PLoS Med. 2012;9(2):e1001177. doi:10.1371/journal.pmed.1001177
  • Splaver A, Lamas GA, Hennekens CH. Homocysteine and cardiovascular disease: biological mechanisms, observational epidemiology, and the need for randomized trials. Am Heart J. 2004;148(1):34–40. doi:10.1016/j.ahj.2004.02.004
  • Han K, Lu Q, Zhu W, Wang T, Du Y, Bai L. Correlations of degree of coronary artery stenosis with blood lipid, CRP, Hcy, GGT, SCD36 and fibrinogen levels in elderly patients with coronary heart disease. Eur Rev Med Pharmacol Sci. 2019;23(21):9582–9589.
  • Bozkurt A, Toyaksi H, Acartürk E, Tuli A, Çayli M. The effects of hyperhomocysteinemia on the presence, extent, and severity of coronary artery disease. Jpn Heart J. 2003;44(3):357–368. doi:10.1536/jhj.44.357
  • Brilakis ES, McConnell JP, Ballman KV, Klee GG, Berger PB. Lack of association between plasma homocysteine and angiographic coronary artery disease in the era of fortification of cereal grain flour with folic acid. Atherosclerosis. 2002;165(2):375–381. doi:10.1016/S0021-9150(02)00303-9
  • Akyürek Ö, Akbal E, Güneş F. Increase in the risk of ST elevation myocardial infarction is associated with homocysteine level. Arch Med Res. 2014;45(6):501–506. doi:10.1016/j.arcmed.2014.08.003
  • Cioni G, Marcucci R, Gori AM, et al. Increased homocysteine and lipoprotein (a) levels highlight systemic atherosclerotic burden in patients with a history of acute coronary syndromes. J Vasc Surg. 2016;64(1):163–170. doi:10.1016/j.jvs.2016.01.056
  • Masud R, Baqai HZ. The communal relation of MTHFR, MTR, ACE gene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease. App Physiol Nutr Metab. 2017;42(10):1009–1014. doi:10.1139/apnm-2017-0030
  • Koenig W, Sund M, Fröhlich M, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg cohort study, 1984 to 1992. Circulation. 1999;99(2):237–242.
  • Xu M, Bi Y, Chen Y, et al. Increased C-reactive protein associates with elevated carotid intima-media thickness in Chinese adults with normal low density lipoprotein cholesterol levels. J Atheroscler Thromb. 2013;20(6):575–584. doi:10.5551/jat.15172
  • Lima BB, Hammadah M, Kim JH, et al. Relation of high-sensitivity cardiac troponin i elevation with exercise to major adverse cardiovascular events in patients with coronary artery disease. Am J Cardiol. 2020;136:1–8. doi:10.1016/j.amjcard.2020.09.019
  • Zhu K, Knuiman M, Divitini M, et al. High-sensitivity cardiac troponin I and risk of cardiovascular disease in an Australian population-based cohort. Heart. 2018;104(11):895–903. doi:10.1136/heartjnl-2017-312093
  • Oh TJ, Ahn CH, Kim B-R, et al. Circulating sortilin level as a potential biomarker for coronary atherosclerosis and diabetes mellitus. Cardiovas Diabetol. 2017;16(1):92. doi:10.1186/s12933-017-0568-9
  • Gustafsen C, Kjolby M, Nyegaard M, et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014;19(2):310–318. doi:10.1016/j.cmet.2013.12.006
  • Linsel-Nitschke P, Samani NJ, Schunkert H. Sorting out cholesterol and coronary artery disease. New Engl J Med. 2010;363(25):2462. doi:10.1056/NEJMcibr1010765
  • Mortensen MB, Kjolby M, Gunnersen S, et al. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis. J Clin Invest. 2014;124(12):5317–5322. doi:10.1172/JCI76002
  • Goettsch C, Hutcheson JD, Aikawa M, et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest. 2016;126(4):1323–1336. doi:10.1172/JCI80851
  • Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–719. doi:10.1038/nature09266
  • Cockerill GW, Rye K-A, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15(11):1987–1994. doi:10.1161/01.ATV.15.11.1987
  • Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. New Engl J Med. 2000;342(12):836–843. doi:10.1056/NEJM200003233421202
  • Masood A, Jafar SS, Akram Z. Serum high sensitivity C-reactive protein levels and the severity of coronary atherosclerosis assessed by angiographic gensini score. Atherosclerosis. 2011;3:4.
  • Moukarbel GV, Arnaout MSA, Alam SE. C‐reactive protein is a marker for a complex culprit lesion anatomy in unstable angina. Clin Cardiol. 2001;24(7):506–510. doi:10.1002/clc.4960240718
  • Arroyo-Espliguero R, Avanzas P, Cosín-Sales J, Aldama G, Pizzi C, Kaski JC. C-reactive protein elevation and disease activity in patients with coronary artery disease. Eur Heart J. 2004;25(5):401–408. doi:10.1016/j.ehj.2003.12.017
  • Brunetti ND, Troccoli R, Correale M, Luigi Pellegrino P, Di BM. C-reactive protein in patients with acute coronary syndrome: correlation with diagnosis, myocardial damage, ejection fraction and angiographic findings. Int J Cardiol. 2006;109(2):248–256. doi:10.1016/j.ijcard.2005.06.021
  • Peppes V, Rammos G, Manios E, Koroboki E, Rokas S, Zakopoulos N. Correlation between myocardial enzyme serum levels and markers of inflammation with severity of coronary artery disease and Gensini score: a hospital-based, prospective study in Greek patients. Clin Interv Aging. 2008;3(4):699. doi:10.2147/CIA.S3551
  • Chambers JC, Eda S, Bassett P, et al. C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. Circulation. 2001;104(2):145–150. doi:10.1161/01.CIR.104.2.145
  • Wadham C, Albanese N, Roberts J, et al. High-density lipoproteins neutralize C-reactive protein proinflammatory activity. Circulation. 2004;109(17):2116–2122. doi:10.1161/01.CIR.0000127419.45975.26
  • Tarchalski J, Guzik P, Wysocki H. Correlation between the extent of coronary atherosclerosis and lipid profile. Mol Cell Biochem. 2003;246(1–2):25–30. doi:10.1023/A:1023443609730