222
Views
6
CrossRef citations to date
0
Altmetric
Original Research

A Novel Defined Necroptosis-Related miRNAs Signature for Predicting the Prognosis of Colon Cancer

, ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 555-565 | Published online: 13 Jan 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Wang Z, Wang X, Yuan J, et al. Survival benefit of palliative local treatments and efficacy of different pharmacotherapies in colorectal cancer with lung metastasis: results from a large retrospective study. Clin Colorectal Cancer. 2018;17(2):e233–e255. doi:10.1016/j.clcc.2017.12.005
  • Manoochehri H, Jalali A, Tanzadehpanah H, et al. Identification of key gene targets for sensitizing colorectal cancer to chemoradiation: an integrative network analysis on multiple transcriptomics data. J Gastrointest Cancer. 2021;2021(12):1–20. doi:10.1007/s12029-021-00690-2
  • Yang Y, Qu A, Wu Q, et al. Prognostic value of a hypoxia-related microRNA signature in patients with colorectal cancer. Aging. 2020;12(1):35–52. doi:10.18632/aging.102228
  • Khoei SG, Manoochehri H, Saidijam M. Systemic biological study for identification of miR-299–5p target genes in cancer. Meta Gene. 2020;24:100655. doi:10.1016/j.mgene.2020.100655
  • Manoochehri H, Sheykhhasan M, Samadi P, et al. System biological and experimental validation of miRNAs target genes involved in colorectal cancer radiation response. Gene Rep. 2019;17:100540. doi:10.1016/j.genrep.2019.100540
  • Manoochehri H, Asadi S, Tanzadehpanah H, et al. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. Gene Rep. 2021;25:101415. doi:10.1016/j.genrep.2021.101415
  • Dai X, Hakizimana O, Zhang X, et al. Orchestrated efforts on host network hijacking: processes governing virus replication. Virulence. 2020;11(1):183–198. doi:10.1080/21505594.2020.1726594
  • Dai Q, Zhang Y, Liao X, et al. Fluorofenidone alleviates renal fibrosis by inhibiting necroptosis through RIPK3/MLKL pathway. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.534775
  • Negroni A, Colantoni E, Cucchiara S, et al. Necroptosis in intestinal inflammation and cancer: new concepts and therapeutic perspectives. Biomolecules. 2020;10(10):1431. doi:10.3390/biom10101431
  • Han Q, Ma Y, Wang H, et al. Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Transl Med. 2018;16(1). doi:10.1186/s12967-018-1580-x
  • Liu Y, Chen Q, Zhu Y, et al. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov. 2021;7(1). doi:10.1038/s41420-021-00596-9
  • Strilic B, Yang L, Albarrán-Juárez J, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536(7615):215–218. doi:10.1038/nature19076
  • Jiao D, Cai Z, Choksi S, et al. Necroptosis of tumor cells leads to tumor necrosis and promotes tumor metastasis. Cell Res. 2018;28(8):868–870. doi:10.1038/s41422-018-0058-y
  • Li X, Wang Y, Wang Y, et al. MiR-141-3p ameliorates RIPK1-mediated necroptosis of intestinal epithelial cells in necrotizing enterocolitis. Aging. 2020;12(18):18073–18083. doi:10.18632/aging.103608
  • Huang S, Wa Q, Pan J, et al. Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J Exp Clin Cancer Res. 2017;36(1). doi:10.1186/s13046-017-0645-7
  • Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.0118
  • Seifert L, Werba G, Tiwari S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and mincle-induced immune suppression. Nature. 2016;532(7598):245–249. doi:10.1038/nature17403
  • Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–333. doi:10.1038/nrc3932
  • Meltzer S, Bjørnetrø T, Lyckander LG, et al. Circulating exosomal miR-141-3p and miR-375 in metastatic progression of rectal cancer. Transl Oncol. 2019;12(8):1038–1044. doi:10.1016/j.tranon.2019.04.014
  • Liu D, Zhang H, Cui M, et al. Hsa-miR-425-5p promotes tumor growth and metastasis by activating the CTNND1-mediated β-catenin pathway and EMT in colorectal cancer. Cell Cycle. 2020;19(15):1917–1927. doi:10.1080/15384101.2020.1783058
  • Wang D, Wang X, Si M, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 2020;474:36–52. doi:10.1016/j.canlet.2020.01.005
  • Yang L, Kong D, He M, et al. MiR-7 mediates mitochondrial impairment to trigger apoptosis and necroptosis in Rhabdomyosarcoma. Biochim Biophys Acta Mol Cell Res. 2020;1867(12):118826. doi:10.1016/j.bbamcr.2020.118826
  • Yu S, Wang D, Shao Y, et al. SP1-induced lncRNA TINCR overexpression contributes to colorectal cancer progression by sponging miR-7-5p. Aging. 2019;11(5):1389–1403. doi:10.18632/aging.101839
  • Wang Y, Jiao J, Ren P, et al. Upregulation of miRNA‐223‐3p ameliorates RIP3‐mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury. J Cell Biochem. 2019;120(7):11582–11592. doi:10.1002/jcb.28438
  • Wu H, Dai Y, Zhang D, et al. LINC00961 inhibits the migration and invasion of colon cancer cells by sponging miR‐223‐3p and targeting SOX11. Cancer Med. 2020;9(7):2514–2523. doi:10.1002/cam4.2850
  • Jin H, Wang X, Chen L, et al. Screening miRNAs for early diagnosis of colorectal cancer by small RNA deep sequencing and evaluation in a Chinese patient population. Onco Targets Ther. 2016;9:1159. doi:10.2147/OTT.S100427
  • Su Y-S, Kuo MZ, Kuo YT, et al. Diterpenoid anthraquinones as chemopreventive agents altered microRNA and transcriptome expressions in cancer cells. Biomed Pharmacother. 2021;136:111260. doi:10.1016/j.biopha.2021.111260
  • Yang T, Cao C, Yang J, et al. miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11. Redox Biol. 2018;15:159–169. doi:10.1016/j.redox.2017.11.025
  • Jiang L, Liu X-Q, Ma Q, et al. hsa‐miR‐500a‐3P alleviates kidney injury by targeting MLKL‐mediated necroptosis in renal epithelial cells. FASEB J. 2018;33(3):3523–3535. doi:10.1096/fj.201801711R
  • Jiang C, Long J, Liu B, et al. miR-500a-3p promotes cancer stem cells properties via STAT3 pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2017;36(1). doi:10.1186/s13046-017-0568-3
  • Zhuo S, Sun M, Bai R, et al. Long intergenic non-coding RNA 00473 promotes proliferation and migration of gastric cancer via the miR-16-5p/CCND2 axis and by regulating AQP3. Cell Death Dis. 2021;12(5). doi:10.1038/s41419-021-03775-9
  • Xie F, Xie G, Sun Q. Long noncoding RNA DLX6-AS1 promotes the progression in cervical cancer by targeting miR-16-5p/ARPP19 axis. Cancer Biother Radiopharm. 2020;35(2):129–136. doi:10.1089/cbr.2019.2960
  • Wu H, Wei M, Jiang X, et al. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by stabilizing miR-16-5p and interacting with the VEGFA/VEGFR1/AKT axis. Mol Ther Nucleic Acids. 2020;20:438–450. doi:10.1016/j.omtn.2020.03.006
  • Ostenfeld MS, Jensen SG, Jeppesen DK, et al. miRNA profiling of circulating EpCAM+extracellular vesicles: promising biomarkers of colorectal cancer. J Extracell Vesicles. 2016;5(1):31488. doi:10.3402/jev.v5.31488
  • Zhou R, Qiu P, Wang H, et al. Identification of microRNA-16-5p and microRNA-21-5p in feces as potential noninvasive biomarkers for inflammatory bowel disease. Aging. 2021;13(3):4634–4646. doi:10.18632/aging.202428
  • Zheng J, Yang T, Gao S, et al. miR‐148a‐3p silences the CANX/MHC‐I pathway and impairs CD8 + T cell‐mediated immune attack in colorectal cancer. FASEB J. 2021;35(8). doi:10.1096/fj.202100235R
  • Tsai H-L, Yang IP, Huang C-W, et al. Clinical significance of microRNA-148a in patients with early relapse of stage II stage and III colorectal cancer after curative resection. Transl Res. 2013;162(4):258–268. doi:10.1016/j.trsl.2013.07.009
  • Slattery ML, Herrick JS, Pellatt DF, et al. MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression. Carcinogenesis. 2016;37(3):245–261. doi:10.1093/carcin/bgv249
  • Song G, Xu S, Zhang H, et al. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J Exp Clin Cancer Res. 2016;35(1). doi:10.1186/s13046-016-0427-7
  • Wang K-J, Meng X-Y, Chen J-F, et al. Emodin induced necroptosis and inhibited glycolysis in the renal cancer cells by enhancing ROS. Oxid Med Cell Longev. 2021;2021:1–17. doi:10.1155/2021/8840590
  • Zhang L, Wang H, Ding K, et al. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236(1):43–59. doi:10.1016/j.toxlet.2015.04.015
  • Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol. 2016;17(5):280–292. doi:10.1038/nrm.2016.27
  • Li J, Zhou L, Liu Y, et al. Comprehensive analysis of cyclin family gene expression in colon cancer. Front Oncol. 2021;11:1484. doi:10.3389/fonc.2021.674394
  • Wang LL, Sun KX, Wu DD, et al. DLEU1 contributes to ovarian carcinoma tumourigenesis and development by interacting with miR-490-3p and altering CDK1 expression. J Cell Mol Med. 2017;21(11):3055–3065. doi:10.1111/jcmm.13217
  • Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol. 2020;107:28–35. doi:10.1016/j.semcdb.2020.03.009
  • Das S, Chandrasekaran AP, Suresh B, et al. Genome-scale screening of deubiquitinase subfamily identifies USP3 as a stabilizer of Cdc25A regulating cell cycle in cancer. Cell Death Differ. 2020;27(11):3004–3020. doi:10.1038/s41418-020-0557-5
  • Corbet C, Bastien E, Santiago De Jesus JP, et al. TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat Commun. 2020;11(1). doi:10.1038/s41467-019-14262-3
  • Zhang C, Zhang X, Xu R, et al. TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion. J Exp Clin Cancer Res. 2017;36(1). doi:10.1186/s13046-017-0628-8
  • Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385–403. doi:10.1038/nrd.2015.17
  • Ghelli Luserna Di Rorà A, Cerchione C, Martinelli G, et al. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J Hematol Oncol. 2020;13(1). doi:10.1186/s13045-020-00959-2
  • Grabinski C, Schaeublin N, Wijaya A, et al. Effect of gold nanorod surface chemistry on cellular response. ACS Nano. 2011;5(4):2870–2879. doi:10.1021/nn103476x
  • Fadaka AO, Bakare OO, Sibuyi NRS, et al. Gene expression alterations and molecular analysis of CHEK1 in solid tumors. Cancers. 2020;12(3):662. doi:10.3390/cancers12030662
  • Priya S, Kaur E, Kulshrestha S, et al. CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. J Cell Sci. 2021;134(15). doi:10.1242/jcs.258601