212
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Identification of Biomarkers of Autophagy-Related Genes Between Early and Advanced Carotid Atherosclerosis

& ORCID Icon
Pages 5321-5334 | Published online: 31 May 2022

References

  • Zhu G, Hom J, Li Y, et al. Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease. Cardiovasc Diagn Ther. 2020;10(4):1048–1067. doi:10.21037/cdt.2020.03.10
  • Cao AH, Wang J, Gao H-Q, et al. Beneficial clinical effects of grape seed proanthocyanidin extract on the progression of carotid atherosclerotic plaques. J Geriatr Cardiol. 2015;12(4):417–423. doi:10.11909/j.issn.1671-5411.2015.04.014
  • Yuan J, Usman A, Das T, et al. Imaging carotid atherosclerosis plaque ulceration: comparison of advanced imaging modalities and recent developments. AJNR Am J Neuroradiol. 2017;38(4):664–671. doi:10.3174/ajnr.A5026
  • Cademartiri F, Balestrieri A, Cau R, et al. Insight from imaging on plaque vulnerability: similarities and differences between coronary and carotid arteries-implications for systemic therapies. Cardiovasc Diagn Ther. 2020;10(4):1150–1162. doi:10.21037/cdt-20-528
  • Goikuria H, Vandenbroeck K, Alloza I. Inflammation in human carotid atheroma plaques. Cytokine Growth Factor Rev. 2018;39:62–70. doi:10.1016/j.cytogfr.2018.01.006
  • Baradaran H, Gupta A. Brain imaging biomarkers of carotid artery disease. Ann Transl Med. 2020;8(19):1277. doi:10.21037/atm-20-1939
  • Liu W, Zhao Y, Wu J. Gene expression profile analysis of the progression of carotid atherosclerotic plaques. Mol Med Rep. 2018;17(4):5789–5795. doi:10.3892/mmr.2018.8575
  • Ammirati E, Moroni F, Norata GD, et al. Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis. Mediators Inflamm. 2015;2015:718329. doi:10.1155/2015/718329
  • Herder M, Arntzen K, Johnsen S, et al. The metabolic syndrome and progression of carotid atherosclerosis over 13 years. The Tromsø study. Cardiovasc Diabetol. 2012;11:77. doi:10.1186/1475-2840-11-77
  • Zamani M, Skagen K, Scott H, et al. Advanced ultrasound methods in assessment of carotid plaque instability: a prospective multimodal study. BMC Neurol. 2020;20(1):39. doi:10.1186/s12883-020-1620-z
  • Liu H, Cao Y, Tong T, et al. Autophagy in atherosclerosis: a phenomenon found in human carotid atherosclerotic plaques. Chin Med J. 2015;128(1):69–74. doi:10.4103/0366-6999.147815
  • Cheng Y, Pan X, Wang J, et al. Fucoidan inhibits NLRP3 inflammasome activation by enhancing p62/SQSTM1-dependent selective autophagy to alleviate atherosclerosis. Oxid Med Cell Longev. 2020;2020:3186306. doi:10.1155/2020/3186306
  • Shen L, Sun Z, Nie P, et al. Sulindac-derived retinoid X receptor-α modulator attenuates atherosclerotic plaque progression and destabilization in ApoE −/− mice. Br J Pharmacol. 2019;176(14):2559–2572. doi:10.1111/bph.14682
  • Wang X, Sun Z, Yuan R, et al. K-80003 inhibition of macrophage apoptosis and necrotic core development in atherosclerotic vulnerable plaques. Cardiovasc Drugs Ther. 2021. doi:10.1007/s10557-021-07237-4
  • Yu F, Zhang Y, Wang Z, et al. Hsa_circ_0030042 regulates abnormal autophagy and protects atherosclerotic plaque stability by targeting eIF4A3. Theranostics. 2021;11(11):5404–5417. doi:10.7150/thno.48389
  • Umahara T, Uchihara T, Hirao K, et al. Essential autophagic protein Beclin 1 localizes to atherosclerotic lesions of human carotid and major intracranial arteries. J Neurol Sci. 2020;414:116836. doi:10.1016/j.jns.2020.116836
  • Luo X, Fu H, Xu C, et al. Efficient treatment of atherosclerosis by dexamethasone acetate and rapamycin co-loaded mPEG-DSPE calcium phosphate nanoparticles. J Biomed Nanotechnol. 2020;16(6):810–826. doi:10.1166/jbn.2020.2936
  • Pankratz F, Hohnloser C, Bemtgen X, et al. MicroRNA-100 suppresses chronic vascular inflammation by stimulation of endothelial autophagy. Circ Res. 2018;122(3):417–432. doi:10.1161/CIRCRESAHA.117.311428
  • Döring Y, Manthey HD, Drechsler M, et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation. 2012;125(13):1673–1683. doi:10.1161/CIRCULATIONAHA.111.046755
  • Adams A, Bojara W, Schunk K. Early diagnosis and treatment of coronary heart disease in symptomatic subjects with advanced vascular atherosclerosis of the carotid artery (Type III and IV b Findings Using Ultrasound). Cardiol Res. 2017;8(1):7–12. doi:10.14740/cr516w
  • Adams A, Bojara W, Schunk K. Early diagnosis and treatment of coronary heart disease in asymptomatic subjects with advanced vascular atherosclerosis of the carotid artery (Type III and IV b Findings Using Ultrasound) and risk factors. Cardiol Res. 2018;9(1):22–27. doi:10.14740/cr667w
  • Singh AS, Atam V, Jain N, et al. Association of carotid plaque echogenicity with recurrence of ischemic stroke. N Am J Med Sci. 2013;5(6):371–376. doi:10.4103/1947-2714.114170
  • Mechtouff L, Rascle L, Crespy V, et al. A narrative review of the pathophysiology of ischemic stroke in carotid plaques: a distinction versus a compromise between hemodynamic and embolic mechanism. Ann Transl Med. 2021;9(14):1208. doi:10.21037/atm-20-7490
  • Xing L, Li R, Zhang S, et al. High burden of carotid atherosclerosis in rural Northeast China: a Population-Based Study. Front Neurol. 2021;12:597992. doi:10.3389/fneur.2021.597992
  • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi:10.1093/nar/gkn923
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Chin CH, Chen S-H, Wu -H-H, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S11. doi:10.1186/1752-0509-8-S4-S11
  • Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet. 2014;5:23. doi:10.3389/fgene.2014.00023
  • Maitrias P, Metzinger-le Meuth V, Nader J, et al. The Involvement of miRNA in Carotid-Related Stroke. Arterioscler Thromb Vasc Biol. 2017;37(9):1608–1617. doi:10.1161/ATVBAHA.117.309233
  • Saxena A, Ng E, Lim ST. Imaging modalities to diagnose carotid artery stenosis: progress and prospect. Biomed Eng Online. 2019;18(1):66. doi:10.1186/s12938-019-0685-7
  • Hoshino M, Kawai H, Sarai M, et al. Noninvasive assessment of stenotic severity and plaque characteristics by coronary CT angiography in patients scheduled for carotid artery revascularization. J Atheroscler Thromb. 2018;25(10):1022–1031. doi:10.5551/jat.42176
  • Wijeratne T, Menon R, Sales C, et al. Carotid artery stenosis and inflammatory biomarkers: the role of inflammation-induced immunological responses affecting the vascular systems. Ann Transl Med. 2020;8(19):1276. doi:10.21037/atm-20-4388
  • Alloza I, Goikuria H, Freijo MDM, et al. A role for autophagy in carotid atherosclerosis. Eur Stroke J. 2016;1(4):255–263. doi:10.1177/2396987316674085
  • Wu Y, Zhang F, Lu R, et al. Functional lncRNA-miRNA-mRNA networks in rabbit carotid atherosclerosis. Aging. 2020;12(3):2798–2813. doi:10.18632/aging.102778
  • Dai J, Zhang Q, Wan C, et al. Significances of viable synergistic autophagy-associated cathepsin B and cathepsin D (CTSB/CTSD) as potential biomarkers for sudden cardiac death. BMC Cardiovasc Disord. 2021;21(1):233. doi:10.1186/s12872-021-02040-3
  • Alirezaei M, Flynn CT, Garcia SD, et al. A food-responsive switch modulates TFEB and autophagy, and determines susceptibility to coxsackievirus infection and pancreatitis. Autophagy. 2021;17(2):402–419. doi:10.1080/15548627.2020.1720425
  • Araujo TF, Cordeiro AV, Vasconcelos DAA, et al. The role of cathepsin B in autophagy during obesity: a systematic review. Life Sci. 2018;209:274–281. doi:10.1016/j.lfs.2018.08.024
  • Feng L, Liang L, Zhang S, et al. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy. 2021;18:1–20.
  • Mao Z, Wu F, Shan Y. Identification of key genes and miRNAs associated with carotid atherosclerosis based on mRNA-seq data. Medicine. 2018;97(13):e9832. doi:10.1097/MD.0000000000009832
  • Miao L, Yin R-X, Zhang Q-H, et al. Integrated DNA methylation and gene expression analysis in the pathogenesis of coronary artery disease. Aging. 2019;11(5):1486–1500. doi:10.18632/aging.101847
  • Yang D, Li Z, Gao G, et al. Combined analysis of surface protein profile and microRNA expression profile of exosomes derived from brain microvascular endothelial cells in early cerebral ischemia. ACS Omega. 2021;6(34):22410–22421. doi:10.1021/acsomega.1c03248
  • Chen N, Debnath J. IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy. 2013;9(8):1214–1227. doi:10.4161/auto.24870
  • Jia Z, Wu N, Jiang X, et al. Integrative transcriptomic analysis reveals the immune mechanism for a CyHV-3-resistant common carp strain. Front Immunol. 2021;12:687151. doi:10.3389/fimmu.2021.687151
  • Yuan X, Wu Q, Liu X, et al. Transcriptomic profile analysis of brain microvascular pericytes in spontaneously hypertensive rats by RNA-Seq. Am J Transl Res. 2018;10(8):2372–2386.
  • Ruiz-Ojeda FJ, Wang J, Bäcker T, et al. Active integrins regulate white adipose tissue insulin sensitivity and brown fat thermogenesis. Mol Metab. 2021;45:101147. doi:10.1016/j.molmet.2020.101147
  • Stauss RD, Grosse GM, Neubert L, et al. Distinct systemic cytokine networks in symptomatic and asymptomatic carotid stenosis. Sci Rep. 2020;10(1):21963. doi:10.1038/s41598-020-78941-8
  • Liu Y, Huan W, Wu J, et al. IGFBP6 is downregulated in unstable carotid atherosclerotic plaques according to an integrated bioinformatics analysis and experimental verification. J Atheroscler Thromb. 2020;27(10):1068–1085. doi:10.5551/jat.52993
  • Meng Y, Zhang C, Liang L, et al. Identification of potential key genes involved in the carotid atherosclerosis. Clin Interv Aging. 2021;16:1071–1084. doi:10.2147/CIA.S312941
  • Niessner A, Sato K, Chaikof EL, et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation. 2006;114(23):2482–2489. doi:10.1161/CIRCULATIONAHA.106.642801
  • Arcidiacono MV, et al. Relationship between low levels of circulating TRAIL and atheromatosis progression in patients with chronic kidney disease. PLoS One. 2018;13(9):e0203716. doi:10.1371/journal.pone.0203716
  • Gonçalves I, Singh P, Tengryd C, et al. sTRAIL-R2 (Soluble TNF [Tumor Necrosis Factor]-related apoptosis-inducing ligand Receptor 2) a marker of plaque cell apoptosis and cardiovascular events. Stroke. 2019;50(8):1989–1996. doi:10.1161/STROKEAHA.119.024379
  • Kawano N, Mori K, Emoto M, et al. Association of serum TRAIL levels with atherosclerosis in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011;91(3):316–320. doi:10.1016/j.diabres.2010.11.034
  • Dong Y, Chen H, Gao J, et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 2019;136:27–41. doi:10.1016/j.yjmcc.2019.09.001
  • Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 2022;42(1):259–305. doi:10.1002/med.21817
  • Maixner N, Pecht T, Haim Y, et al. A TRAIL-TL1A paracrine network involving adipocytes, macrophages, and lymphocytes induces adipose tissue dysfunction downstream of E2F1 in human obesity. Diabetes. 2020;69(11):2310–2323. doi:10.2337/db19-1231