144
Views
0
CrossRef citations to date
0
Altmetric
Original Research

LAMC1 is a Novel Prognostic Factor and a Potential Therapeutic Target in Gastric Cancer

, , , , , , , , ORCID Icon & show all
Pages 3183-3198 | Published online: 19 Mar 2022

References

  • GBD 2017 Stomach Cancer Collaborators. Systematic analysis for the Global Burden of Disease study 2017. Lancet. 2020;5(1):42–54. doi:10.1016/S2468-1253(19)30328-0.
  • Rebecca L, Siegel M, Kimberly D, Miller MP, Ahmedin Jemal DV. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.
  • Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5(10):588–599. doi:10.1038/ncponc1187
  • Muhammad SA, Raza W, Nguyen T, Bai B, Wu X, Chen J. Cellular signaling pathways in insulin resistance-systems biology analyses of microarray dataset reveals new drug target gene signatures of type 2 diabetes mellitus. Front Physiol. 2017;8:13. doi:10.3389/fphys.2017.00013
  • Domogatskaya A, Rodin S, Tryggvason K. Functional diversity of laminins. Annu Rev Cell Dev Biol. 2012;28:523–553. doi:10.1146/annurev-cellbio-101011-155750
  • Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer. 2007;7(5):370–380. doi:10.1038/nrc2089
  • Kuhn E, Kurman RJ, Soslow RA, et al. The diagnostic and biological implications of laminin expression in serous tubal intraepithelial carcinoma. Am J Surg Pathol. 2012;36(12):1826–1834. doi:10.1097/PAS.0b013e31825ec07a
  • Zhang Y, Xi S, Chen J, et al. Overexpression of LAMC1 predicts poor prognosis and enhances tumor cell invasion and migration in hepatocellular carcinoma. J Cancer. 2017;8(15):2992–3000. doi:10.7150/jca.21038
  • Ke HL, Ke RH, Li B, Wang XH, Wang YN, Wang XQ. Association between laminin γ1 expression and meningioma grade, recurrence, and progression-free survival. Acta Neurochir (Wien). 2013;155(1):165–171. doi:10.1007/s00701-012-1512-0
  • Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–W560. doi:10.1093/nar/gkz430
  • Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503–508. doi:10.1038/s41586-019-1186-3
  • Wen X, Shao Z, Chen S, et al. Construction of an RNA-binding protein-related prognostic model for pancreatic adenocarcinoma based on TCGA and GTEx databases. Front Genet. 2021;11:610350. doi:10.3389/fgene.2020.610350
  • Huang H, Weng H, Zhou K, et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature. 2019;567(7748):414–419. doi:10.1038/s41586-019-1016-7
  • Argani P, Rosty C, Reiter RE, et al. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 2001;61(11):4320–4324.
  • Wang YY, Li L, Zhao ZS, et al. L1 and epithelial cell adhesion molecules associated with gastric cancer progression and prognosis in examination of specimens from 601 patients. J Exp Clin Cancer Res. 2013;32(1):66. doi:10.1186/1756-9966-32-66
  • Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–175. doi:10.1016/j.pharmthera.2013.12.004
  • Désert MS, Desille M, Desille M, et al. “Fibrous nests” in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome. Int J Biochem Cell Biol. 2016;81:195–207. doi:10.1016/j.biocel.2016.08.017
  • Kashima H, Wu RC, Wang Y, et al. Laminin C1 expression by uterine carcinoma cells is associated with tumor progression. Gynecol Oncol. 2015;139(2):338–344. doi:10.1016/j.ygyno.2015.08.025
  • Huang SX, Zhao ZY, Weng GH, et al. The correlation of microRNA-181a and target genes with poor prognosis of glioblastoma patients. Int J Oncol. 2016;49(1):217–224. doi:10.3892/ijo.2016.3511
  • Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev. 2019;18(3):175–196. doi:10.1038/s41573-018-0006-z
  • Kruger S, Ilmer M, Kobold S, et al. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res. 2019;38(1):268. doi:10.1186/s13046-019-1266-0
  • Johnston A, Murphy K, Jenkinson L, et al. Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell. 2015;162(6):1365–1378. doi:10.1016/j.cell.2015.08.031
  • Simon T, Bromberg JS. Regulation of the immune system by laminins. Trends Immunol. 2017;38(11):858–871. doi:10.1016/j.it.2017.06.002
  • Warren KJ, Iwami D, Harris DG, et al. Laminins affect T cell trafficking and allograft fate. J Clin Invest. 2014;124(5):2204–2218. doi:10.1172/JCI73683
  • Saez A, Herrero-Fernandez B, Gomez-Bris R, et al. Lamin A/C and the immune system: one intermediate filament, many faces. Int J Mol Sci. 2020;21(17):6109. doi:10.3390/ijms21176109
  • Bohnsack JF, Kleinman HK, Takahashi T, et al. Connective tissue proteins and phagocytic cell function. Laminin enhances complement and Fc-mediated phagocytosis by cultured human macrophages. J Exp Med. 1985;161(5):912–923. doi:10.1084/jem.161.5.912
  • Wroblewski LE, Piazuelo MB, Chaturvedi R, et al. Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut. 2015;64(5):720–730. doi:10.1136/gutjnl-2014-307650
  • Sohoni S, Ghosh P, Wang T, et al. Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non-small cell lung cancer cells. Cancer Res. 2019;79(10):2511–2525. doi:10.1158/0008-5472.CAN-18-2156
  • Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosnian J Basic Med Sci. 2018;18(1):8–20. doi:10.17305/bjbms.2018.2756
  • Derynck R, Akhurst RJ, Balmain A, et al. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29(2):117–129. doi:10.1038/ng1001-117
  • Neal DE, Bennett M, Hall R, et al. Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours. Lancet (London, England). 1985;325(8425):366–368. doi:10.1016/s0140-6736(85)91386-8
  • Turner N, Pearson A, Sharpe R, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70(5):2085–2094. doi:10.1158/0008-5472.CAN-09-3746
  • Schildhaus HU, Nogova L, Wolf J, et al. FGFR1 amplifications in squamous cell carcinomas of the lung: diagnostic and therapeutic implications. Transl Lung Cancer Res. 2013;2(2):92–100. doi:10.3978/j.issn.2218-6751.2013.03.03
  • Wu J, Du X, Li W, et al. A novel non-A TP competitive FGFR1 inhibitor with therapeutic potential on gastric cancer through inhibition of cell proliferation, survival and migration. Apoptosis. 2017;22(6):852–864. doi:10.1007/s10495-017-1361-7
  • Lu T, Li Z, Yang Y, et al. The Hippo/Y AP1 pathway interacts with FGFR1 signaling to maintain stemness in lung cancer. Cancer Lett. 2018;423:36–46. doi:10.1016/j.canlet.2018.02.015
  • Jones DTW, Hutter B, Jäger N, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–932. doi:10.1038/ng.2682
  • Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34(2):280–300. doi:10.1002/med.21288
  • Geberhiwot T, Assefa D, Kortesmaa J, et al. Laminin-8 (alpha4beta1gamma1) is synthesized by lymphoid cells, promotes lymphocyte migration and costimulates T cell proliferation. J Cell Sci. 2001;114(2):423–433. doi:10.1242/jcs.114.2.423