152
Views
2
CrossRef citations to date
0
Altmetric
Review

Putative Involvement of Cytokine Modulation in the Development of Perioperative Neurocognitive Disorders

, , ORCID Icon & ORCID Icon
Pages 5349-5360 | Published online: 01 Jun 2022

References

  • Safavynia SA, Goldstein PA. The role of neuroinflammation in postoperative cognitive dysfunction: moving from hypothesis to treatment. Front Psychiatry. 2019;9:752. doi:10.3389/fpsyt.2018.00752
  • Marcantonio ER. Postoperative delirium: a 76-year-old woman with delirium following surgery. J Am Med Assoc. 2012;308(1):73–81. doi:10.1001/jama.2012.6857
  • Yang T, Velagapudi R, Terrando N. Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol. 2020;21(11):1319–1326. doi:10.1038/s41590-020-00812-1
  • Inouye SK, Westendorp RGJ, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911–922. doi:10.1016/S0140-6736(13)60688-1
  • DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136–153. doi:10.1111/jnc.13607
  • Song WM, Colonna M. The identity and function of microglia in neurodegeneration. Nat Immunol. 2018;19(10):1048–1058. doi:10.1038/s41590-018-0212-1
  • Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181–1194. doi:10.1007/s12035-014-9070-5
  • Saxena S, Kruys V, Vamecq J, Maze M. The role of microglia in perioperative neuroinflammation and neurocognitive disorders. Front Aging Neurosci. 2021;13. doi:10.3389/fnagi.2021.671499.
  • Czeh M, Gressens P, Kaindl AM, The Ying and Yang of microglia. Dev Neurosci. 2011;33(3–4):199–209. doi:10.1159/000328989
  • Boche D, Perry VH, Nicoll JAR. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39(1):3–18. doi:10.1111/NAN.12011
  • Amici SA, Dong J, Guerau-de-Arellano M. Molecular mechanisms modulating the phenotype of macrophages and microglia. Front Immunol. 2017;8:1520. doi:10.3389/fimmu.2017.01520
  • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6. doi:10.12703/P6-13.
  • Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354–365. doi:10.1016/j.nurt.2010.05.014
  • Evered L, Scott DA, Silbert B, Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg. 2011;112(5):1179–1185. doi:10.1213/ANE.0b013e318215217e
  • Johansen A, Wakeman R, Boulton C, Plant F, Roberts J, Williams A. National hip fracture database; 2013:1–96. Available from: https://www.nhfd.co.uk/20/hipfractureR.nsf/docs/2018Report. Accessed August 28, 2021.
  • O’Mahony R, Murthy L, Akunne A, Young J. Synopsis of the National Institute for Health and Clinical Excellence guideline for prevention of Delirium. Ann Intern Med. 2011;154(11):746–751. doi:10.7326/0003-4819-154-11-201106070-00006
  • Robinson TN, Raeburn CD, Tran ZV, Angles EM, Brenner L, Moss M. Postoperative delirium in the elderly: risk factors and outcomes. Ann Surg. 2009;249(1):173–178. doi:10.1097/SLA.0b013e31818e4776
  • Lee HB, Oldham MA, Sieber FE, Oh ES. Impact of Delirium after hip fracture surgery on one-year mortality in patients with or without dementia: a case of effect modification. Am J Geriatr Psychiatry. 2017;25(3):308–315. doi:10.1016/j.jagp.2016.10.008
  • McCusker J, Cole M, Abrahamowicz M, Primeau F, Belzile E. Delirium predicts 12-month mortality. Arch Intern Med. 2002;162(4):457–463. doi:10.1001/archinte.162.4.457
  • Marcantonio ER, Flacker JM, Michaels M, Resnick NM. Delirium is independently associated with poor functional recovery after hip fracture. J Am Geriatr Soc. 2000;48(6):618–624. doi:10.1111/j.1532-5415.2000.tb04718.x
  • Davis DHJ, Muniz Terrera G, Keage H, et al. Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain. 2012;135(9):2809–2816. doi:10.1093/brain/aws190
  • Fowler AJ, Abbott TEF, Prowle J, Pearse RM. Age of patients undergoing surgery. Br J Surg. 2019;106(8):1012–1018. doi:10.1002/bjs.11148
  • Kotekar N, Shenkar A, Nagaraj R. Postoperative cognitive dysfunction – current preventive strategies. Clin Interv Aging. 2018;13:2267–2273. doi:10.2147/CIA.S133896
  • Silbert BS, Evered LA, Scott DA. Incidence of postoperative cognitive dysfunction after general or spinal anaesthesia for extracorporeal shock wave lithotripsy. Br J Anaesth. 2014;113(5):784–791. doi:10.1093/bja/aeu163
  • Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. doi:10.1016/S1474-4422(15)70016-5
  • Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(9):1200–1205. doi:10.1136/jnnp.74.9.1200
  • Chakrabarty P, Jansen‐West K, Beccard A, et al. Massive gliosis induced by interleukin‐6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 2010;24(2):548–559. doi:10.1096/fj.09-141754
  • Chakrabarty P, Herring A, Ceballos-Diaz C, Das P, Golde TE. Hippocampal expression of murine TNF results in attenuation of amyloid deposition in vivo. Mol Neurodegener. 2011;6(1). doi:10.1186/1750-1326-6-16
  • Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1β in postoperative cognitive dysfunction. Ann Neurol. 2010;68(3):360–368. doi:10.1002/ana.22082
  • Cerejeira J, Lagarto L, Mukaetova-Ladinska EB. The immunology of delirium. Neuroimmunomodulation. 2014;21(2–3):72–78. doi:10.1159/000356526
  • Lin X, Chen Y, Zhang P, Chen G, Zhou Y, Yu X. The potential mechanism of postoperative cognitive dysfunction in older people. Exp Gerontol. 2020;130:110791. doi:10.1016/j.exger.2019.110791
  • Hall RJ, Watne LO, Cunningham E, et al. CSF biomarkers in delirium: a systematic review. Int J Geriatr Psychiatry. 2018;33(11):1479–1500. doi:10.1002/gps.4720
  • Ray A. Cytokines and their role in health and disease: a brief overview. MOJ Immunol. 2016;4(2). doi:10.15406/moji.2016.04.00121
  • Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. doi:10.1016/j.bbi.2019.06.015
  • Upthegrove R, Khandaker GM. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Curr Top Behav Neurosci. 2020;44:49–66. doi:10.1007/7854_2018_88
  • Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37(SUPPL. 1):S34–S45. doi:10.1002/eji.200737772
  • Cavaillon JM. Cytokines and macrophages. Biomed Pharmacother. 1994;48(10):445–453. doi:10.1016/0753-3322(94)90005-1
  • Wiese S, Karus M, Faissner A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol. 2012;3:120. doi:10.3389/fphar.2012.00120
  • Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21(6):727–735. doi:10.1016/j.bbi.2007.05.005
  • Schwarz MJ. Cytokines, neurophysiology, neuropsychology, and psychiatric symptoms. Dialogues Clin Neurosci. 2003;5(2):139–153. doi:10.31887/dcns.2003.5.2/mschwarz
  • Maier SF, Goehler LE, Fleshner M, Watkins LR. The role of the vagus nerve in cytokine-to-brain communication. In: Annals of the New York Academy of Sciences. John Wiley & Sons, Ltd; Vol. 840, 1998:289–300. doi:10.1111/j.1749-6632.1998.tb09569.x
  • Sisó S, Jeffrey M, González L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 2010;120(6):689–705. doi:10.1007/s00401-010-0743-5
  • Westhoff D, Hoogland IC, Van De Beek D, et al. Preoperative cytokine levels in CSF do not predict post-surgical delirium. Shock. 2012;37:37–38.
  • Lindblom RPF, Shen Q, Axén S, Landegren U, Kamali-Moghaddam M, Thelin S. Protein profiling in serum and cerebrospinal fluid following complex surgery on the thoracic aorta identifies biological markers of neurologic injury. J Cardiovasc Transl Res. 2018;11(6):503–516. doi:10.1007/s12265-018-9835-8
  • Neerland BE, Hall RJ, Seljeflot I, et al. Associations between delirium and preoperative cerebrospinal fluid C-Reactive Protein, Interleukin-6, and Interleukin-6 receptor in individuals with acute hip fracture. J Am Geriatr Soc. 2016;64(7):1456–1463. doi:10.1111/jgs.14238
  • Desborough JP. The stress response to trauma and surgery. Br J Anaesth. 2000;85(1):109–117. doi:10.1093/bja/85.1.109
  • Christy NP, Fishman RA. Studies of the blood-cerebrospinal fluid barrier to cortisol in the dog. J Clin Invest. 1961;40(11):1997–2006. doi:10.1172/JCI104426
  • Bromander S, Anckarsater R, Kristiansson M, et al. Changes in serum and cerebrospinal fluid cytokines in response to non-neurological surgery: an observational study. J Neuroinflammation. 2012;9(1):242. doi:10.1186/1742-2094-9-242
  • Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6(3):131–144. doi:10.1038/nrneurol.2010.4
  • Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569–577. doi:10.1016/j.it.2015.08.006
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150. doi:10.1038/nrneurol.2017.188
  • Reinsfelt B, Ricksten S-E, Zetterberg H, Blennow K, Freden-Lindqvist J, Westerlind A. Cerebrospinal fluid markers of brain injury, inflammation, and blood-brain barrier dysfunction in cardiac surgery. Ann Thorac Surg. 2012;94(2):549–555. doi:10.1016/j.athoracsur.2012.04.044
  • Tibbling G, Link H, Öhman S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest. 1977;37(5):385–390. doi:10.1080/00365517709091496
  • Kragh-Hansen U. Human serum albumin: a multifunctional protein. In: Albumin in Medicine: Pathological and Clinical Applications. Singapore: Springer;2016:1–24. doi:10.1007/978-981-10-2116-9_1
  • Sweeney MD, Sagare AP, Zlokovic BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer’s disease. J Cereb Blood Flow Metab. 2015;35(7):1055–1068. doi:10.1038/jcbfm.2015.76
  • Hov KR, Berg JP, Frihagen F, et al. Blood-cerebrospinal fluid barrier integrity in delirium determined by Q-Albumin. Dement Geriatr Cogn Disord. 2016;41(3–4):192–198. doi:10.1159/000443789
  • Ayob F, Lam E, Ho G, Chung F, El-Beheiry H, Wong J. Pre-operative biomarkers and imaging tests as predictors of post-operative delirium in non-cardiac surgical patients: a systematic review. BMC Anesthesiol. 2019;19(1). doi:10.1186/s12871-019-0693-y
  • Lin X, Tang J, Liu C, et al. Cerebrospinal fluid cholinergic biomarkers are associated with postoperative delirium in elderly patients undergoing Total Hip/knee replacement: a prospective cohort study. BMC Anesthesiol. 2020;20(1):1–11. doi:10.1186/s12871-020-01166-9
  • Chuang D, Power SE, Dunbar PR, Hill AG. Central nervous system interleukin-8 production following neck of femur fracture. ANZ J Surg. 2005;75(9):813–816. doi:10.1111/j.1445-2197.2005.03530.x
  • Sajjad MU, Blennow K, Knapskog AB, et al. Cerebrospinal fluid levels of Interleukin-8 in delirium, dementia, and cognitively healthy patients. J Alzheimers Dis. 2020;73(4):1363–1372. doi:10.3233/JAD-190941
  • Hirsch J, Vacas S, Terrando N, et al. Perioperative cerebrospinal fluid and plasma inflammatory markers after orthopedic surgery. J Neuroinflammation. 2016;13(1):211. doi:10.1186/s12974-016-0681-9
  • MacLullich AMJ, Edelshain BT, Hall RJ, et al. Cerebrospinal fluid interleukin-8 levels are higher in people with Hip fracture with perioperative delirium than in controls. J Am Geriatr Soc. 2011;59(6):1151–1153. doi:10.1111/j.1532-5415.2011.03428.x
  • Cape E, Hall RJ, van Munster BC, et al. Cerebrospinal fluid markers of neuroinflammation in delirium: a role for interleukin-1β in delirium after Hip fracture. J Psychosom Res. 2014;77(3):219–225. doi:10.1016/j.jpsychores.2014.06.014
  • Ji MH, Yuan HM, Zhang GF, et al. Changes in plasma and cerebrospinal fluid biomarkers in aged patients with early postoperative cognitive dysfunction following total Hip-replacement surgery. J Anesth. 2013;27(2):236–242. doi:10.1007/s00540-012-1506-3
  • Fertleman M, Pereira C, Dani M, Harris BHL, Di Giovannantonio M, Taylor-Robinson SD. Cytokine changes in cerebrospinal fluid and plasma after emergency orthopaedic surgery. Sci Rep. 2022;12(1):2221. doi:10.1038/s41598-022-06034-9
  • Reinsfelt B, Westerlind A, Blennow K, Zetterberg H, Ricksten S-E. Open-heart surgery increases cerebrospinal fluid levels of Alzheimer-associated amyloid beta. Acta Anaesthesiol Scand. 2013;57(1):82–88. doi:10.1111/j.1399-6576.2012.02769.x
  • Danielson M, Wiklund A, Granath F, et al. Neuroinflammatory markers associate with cognitive decline after major surgery: findings of an explorative study. Ann Neurol. 2020;87(3):370–382. doi:10.1002/ana.25678
  • Vasunilashorn SM, Ngo LH, Dillon ST, et al. Plasma and cerebrospinal fluid inflammation and the blood-brain barrier in older surgical patients: the Role of Inflammation after Surgery for Elders (RISE) study. J Neuroinflammation. 2021;18(1):1–10. doi:10.1186/s12974-021-02145-8
  • Kawano T, Yamanaka D, Aoyama B, et al. Involvement of acute neuroinflammation in postoperative delirium-like cognitive deficits in rats. J Anesth. 2018;32(4):506–517. doi:10.1007/s00540-018-2504-x
  • Yeager MP, Lunt P, Arruda J, Whalen K, Rose R, DeLeo JA. Cerebrospinal fluid cytokine levels after surgery with spinal or general anesthesia. Reg Anesth Pain Med. 1999;24(6):557–562. doi:10.1016/s1098-7339(99)90049-4
  • Wang P, Velagapudi R, Kong C, et al. Neurovascular and immune mechanisms that regulate postoperative delirium superimposed on dementia. Alzheimers Dement. 2020;16(5):734–749. doi:10.1002/alz.12064
  • Granger KT, Barnett JH. Postoperative cognitive dysfunction: an acute approach for the development of novel treatments for neuroinflammation. Drug Discov Today. 2021;26(5):1111–1114. doi:10.1016/j.drudis.2021.01.019
  • Scott DL. Biologics-based therapy for the treatment of rheumatoid arthritis. Clin Pharmacol Ther. 2012;91(1):30–43. doi:10.1038/clpt.2011.278
  • Shi HY, Ng SC. The state of the art on treatment of Crohn’s disease. J Gastroenterol. 2018;53(9):989–998. doi:10.1007/s00535-018-1479-6
  • Buvanendran A, Kroin JS, Berger RA, et al. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology. 2006;104(3):403–410. doi:10.1097/00000542-200603000-00005
  • Renner B, Brune K, Zacher J, Walter G, Strauss J. Preoperative administration of etoricoxib in patients undergoing Hip replacement causes inhibition of inflammatory mediators and better pain relief. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:83. doi:10.1007/s00210-011-0617-y
  • Chau DL, Walker V, Pai L, Cho LM. Opiates and elderly: use and side effects. Clin Interv Aging. 2008;3(2):273. doi:10.2147/CIA.S1847
  • Nader ND, Ignatowski TA, Kurek CJ, Knight PR, Spengler RN. Clonidine suppresses plasma and cerebrospinal fluid concentrations of TNF-α during the perioperative period. Anesth Analg. 2001;93(2):363–369. doi:10.1213/00000539-200108000-00026
  • Danielson M, Reinsfelt B, Westerlind A, Zetterberg H, Blennow K, Ricksten S-E. Effects of methylprednisolone on blood-brain barrier and cerebral inflammation in cardiac surgery-a randomized trial. J Neuroinflammation. 2018;15(1):283. doi:10.1186/s12974-018-1318-y
  • Royse CF, Saager L, Whitlock R, et al. Impact of methylprednisolone on postoperative quality of recovery and Delirium in the steroids in cardiac surgery trial: a randomized, double-blind, placebo-controlled substudy. Anesthesiology. 2017;126(2):223–233. doi:10.1097/ALN.0000000000001433
  • Whitlock RP, Devereaux PJ, Teoh KH, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(10000):1243–1253. doi:10.1016/S0140-6736(15)00273-1
  • Valentin LSS, Pereira VFA, Pietrobon RS, et al. Effects of single low dose of dexamethasone before noncardiac and nonneurologic surgery and general anesthesia on postoperative cognitive dysfunction - A Phase III double blind, randomized clinical trial. PLoS One. 2016;11(5):e0152308. doi:10.1371/journal.pone.0152308
  • Wang AS, Armstrong EJ, Armstrong AW. Corticosteroids and wound healing: clinical considerations in the perioperative period. Am J Surg. 2013;206(3):410–417. doi:10.1016/j.amjsurg.2012.11.018
  • Cole JL. Steroid-induced sleep disturbance and delirium: a focused review for critically ill patients. Fed Pract. 2020;37(6):260. doi:10.12788/fp.003
  • Meso Scale Discovery. Proinflammatory Panel 1 (human) Kits; 2020. Available from: https://www.mesoscale.com/~/media/files/product%20inserts/proinflammatory%20panel%201%20human%20insert.pdf. Accessed May 26, 2022.
  • Epstein N. Cerebrospinal fluid drains reduce risk of spinal cord injury for thoracic/thoracoabdominal aneurysm surgery: a review. Surg Neurol Int. 2018;9(1):48. doi:10.4103/sni.sni_433_17
  • Evans RW, Armon C, Frohman EM, Goodin DS. Assessment: prevention of post-lumbar puncture headaches: report of the therapeutics and technology assessment subcommittee of the American Academy of neurology. Neurology. 2000;55(7):909–914. doi:10.1212/WNL.55.7.909
  • Ahmed SV, Jayawarna C, Jude E. Post lumbar puncture headache: diagnosis and management. Postgrad Med J. 2006;82(973):713–716. doi:10.1136/pgmj.2006.044792
  • Berger M, Oyeyemi D, Olurinde MO, et al. The INTUIT Study: investigating neuroinflammation underlying postoperative cognitive dysfunction. J Am Geriatr Soc. 2019;67(4):794–798. doi:10.1111/jgs.15770
  • Azim S, Nicholson J, Rebecchi MJ, et al. Interleukin-6 and leptin levels are associated with preoperative pain severity in patients with osteoarthritis but not with acute pain after total knee arthroplasty. The Knee. 2018;25(1):25–33. doi:10.1016/j.knee.2017.12.001
  • Wang Y, Landry K, Issa M, et al. Surgery-induced inflammation reduces morphine distribution into cerebrospinal fluid. FASEB J. 2013;27. Available from: http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/668.2?sid=bb3a5aa8-6cd0-4e69-abb1-4b007ff25888.