283
Views
2
CrossRef citations to date
0
Altmetric
General Medicine

Improving Mortality Risk Prediction with Routine Clinical Data: A Practical Machine Learning Model Based on eICU Patients

, , , , &
Pages 3151-3161 | Received 08 Apr 2023, Accepted 16 Jul 2023, Published online: 26 Jul 2023

References

  • Keegan MT, Gajic O, Afessa B. Severity of illness scoring systems in the intensive care unit. Crit Care Med. 2011;39(1):163–169.
  • Salluh JI, Soares M. ICU severity of illness scores: APACHE, SAPS and MPM. Curr Opin Crit Care. 2014;20(5):557–565. doi:10.1097/MCC.0000000000000135
  • Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. doi:10.1097/00003246-198510000-00009
  • Breslow MJ, Badawi O. Severity scoring in the critically ill: part 2: maximizing value from outcome prediction scoring systems. Chest. 2012;141(2):518–527. doi:10.1378/chest.11-0331
  • Kramer AA. Predictive mortality models are not like fine wine. Crit Care. 2005;9(6):636–637. doi:10.1186/cc3899
  • Sakr Y, Krauss C, Amaral AC, et al. Comparison of the performance of SAPS II, SAPS 3, APACHE II, and their customized prognostic models in a surgical intensive care unit. Br J Anaesth. 2008;101:798–803. doi:10.1093/bja/aen291
  • Falcão ALE, Barros AGA, Bezerra AAM, et al. The prognostic accuracy evaluation of SAPS 3, SOFA and APACHE II scores for mortality prediction in the surgical ICU: an external validation study and decision-making analysis. Ann Intensive Care. 2019;9(1):18. doi:10.1186/s13613-019-0488-9
  • Delahanty RJ, Kaufman D, Jones SS. Development and evaluation of an automated machine learning algorithm for in-hospital mortality risk adjustment among critical care patients. Crit Care Med. 2018;46(6):e481–e488. doi:10.1097/CCM.0000000000003011
  • Ruyssinck J, van der Herten J, Houthooft R, et al. Random survival forests for predicting the bed occupancy in the intensive care unit. Comput. 2016;2016:7087053.
  • Ngufor C, Murphree D, Upadhyaya S, et al. Predicting prolonged stay in the ICU attributable to bleeding in patients offered plasma transfusion. AMIA Annu Symp Proc. 2017;2016:954–963.
  • Zhang L, Huang T, Xu F, et al. Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest). BMC Emerg Med. 2022;22(1):1–10.
  • Raita Y, Goto T, Faridi MK, et al. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care. 2019;23(1):64. doi:10.1186/s13054-019-2351-7
  • Hu C, Li L, Li Y, et al. Explainable machine-learning model for prediction of in-hospital mortality in septic patients requiring intensive care unit readmission. Infect Dis Ther. 2022;11(4):1695–1713.
  • Batista A, Diniz C, Bonilha EA, et al. Neonatal mortality prediction with routinely collected data: a machine learning approach. BMC Pediatr. 2021;21(1):322. doi:10.1186/s12887-021-02788-9
  • Alghatani K, Ammar N, Rezgui A, et al. Predicting intensive care unit length of stay and mortality using patient vital signs: machine learning model development and validation. JMIR Med Inform. 2021;9(5):e21347. doi:10.2196/21347
  • Subudhi S, Verma A, Patel AB, et al. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med. 2021;4(1):87.
  • Deliberato RO, Escudero GG, Bulgarelli L, et al. SEVERITAS: an externally validated mortality prediction for critically ill patients in low and middle-income countries. Int J Med Inform. 2019;131:103959. doi:10.1016/j.ijmedinf.2019.103959
  • Yu R, Zheng Y, Zhang R, et al. Using a multi-task recurrent neural network with attention mechanisms to predict hospital mortality of patients. IEEE J Biomed Health Inform. 2020;24(2):486–492. doi:10.1109/JBHI.2019.2916667
  • Hou N, Li M, He L, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18(1):462.
  • Liu J, Wu J, Liu S, et al. Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model. PLoS One. 2021;16(2):e0246306. doi:10.1371/journal.pone.0246306
  • Shillan D, Sterne JAC, Champneys A, et al. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):284.
  • Pollard TJ, Johnson AEW, Raffa JD, et al. The eICU collaborative research database, a freely available multi-center database for critical care research. Scientific Data. 2018;5:180178. doi:10.1038/sdata.2018.178
  • Hameed M, Alamgir Z. Improving mortality prediction in Acute Pancreatitis by machine learning and data augmentation. Comput Biol Med. 2022;150:106077. doi:10.1016/j.compbiomed.2022.106077
  • Zhao SP, Liu P, Tang GX, et al. External validation of a deep learning prediction model for in-hospital mortality among ICU patients. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA); 2022 January 21–23; Shenyang, China: IEEE; 2022.
  • Sarica A, Cerasa A, Quattrone A, et al. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front Aging Neurosci. 2017;9:329.
  • Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining-KDD. 2016 August 13–17; San Francisco, CA, USA; 2016.
  • Renganathan V. Overview of artificial neural network models in the biomedical domain. Bratisl Lek Listy. 2019;120(7):536–540. doi:10.4149/BLL_2019_087
  • Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–1246. doi:10.1093/bib/bbx044
  • Yuan Y, Su W, Zhu M. Threshold-free measures for assessing the performance of medical screening tests. Front Public Health. 2015;3:57. doi:10.3389/fpubh.2015.00057
  • Paul P, Pennell ML, Lemeshow S. Standardizing the power of the Hosmer-Lemeshow goodness of fit test in large data sets. Stat Med. 2013;32:67–80. doi:10.1002/sim.5525
  • Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35:2052–2056. doi:10.1097/01.CCM.0000275267.64078.B0
  • Schrynemackers M, Küffner R, Geurts P. On protocols and measures for the validation of supervised methods for the inference of biological networks. Front Genet. 2013;4:262. doi:10.3389/fgene.2013.00262
  • Boyd K, Santos Costa V, Davis J, et al. Unachievable region in precision-recall space and its effect on empirical evaluation. Proc Int Conf Mach Learn. 2012;2012:349.
  • Meyer A, Zverinski D, Pfahringer B, et al. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med. 2018;6(12):905–914. doi:10.1016/S2213-2600(18)30300-X
  • Davenport TH, Barth P, Bean R. Why detailed data is as important as big data. MIT Sloan Manage Rev. 2012;53(4):1–3.
  • Kramer AA, Higgins TL, Zimmerman JE. Comparison of the mortality probability admission model iii, national quality forum, and acute physiology and chronic health evaluation IV hospital mortality models: implications for national benchmarking. Crit Care Med. 2014;42:544–553. doi:10.1097/CCM.0b013e3182a66a49
  • Baker S, Xiang W, Atkinson I. Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach. Sci Rep. 2020;10(1):21282. doi:10.1038/s41598-020-78184-7