268
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exosomal miR-320e as a Novel Potential Biomarker for Cerebral Small Vessel Disease

, , , &
Pages 641-655 | Received 30 Nov 2022, Accepted 20 Jan 2023, Published online: 21 Feb 2023

References

  • ter Telgte A, van Leijsen EMC, Wiegertjes K, et al. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018;14:387–398. doi:10.1038/s41582-018-0014-y
  • Lu H, Kashani AH, Arfanakis K, et al. MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols. Alzheimers Dement. 2021;17:716–725. doi:10.1002/alz.12216
  • Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J Cereb Blood Flow Metab. 2016;36:72–94. doi:10.1038/jcbfm.2015.116
  • Wilcock D, Jicha G, Blacker D, et al. MarkVCID cerebral small vessel consortium: I. enrollment, clinical, fluid protocols. Alzheimers Dement. 2021;17:704–715. doi:10.1002/alz.12215
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–383. doi:10.1083/jcb.201211138
  • Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006;31:642–648. doi:10.1016/j.mcn.2005.12.003
  • Shi M, Sheng L, Stewart T, Zabetian CP, Zhang J. New windows into the brain: central nervous system-derived extracellular vesicles in blood. Prog Neurobiol. 2019;175:96–106. doi:10.1016/j.pneurobio.2019.01.005
  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17. doi:10.1038/s41556-018-0250-9
  • Treiber T, Treiber N, Meister G. Regulation of MicroRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20:5–20. doi:10.1038/s41580-018-0059-1
  • Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-MicroRNAs. Nucleic Acids Res. 2010;38:215–224. doi:10.1093/nar/gkp857
  • Choi H, Choi K, Kim D-H, et al. Strategies for targeted delivery of exosomes to the brain: advantages and challenges. Pharmaceutics. 2022;14:672. doi:10.3390/pharmaceutics14030672
  • Liu W-L, Lin H-W, Lin M-R, et al. Emerging blood exosome-based biomarkers for preclinical and clinical alzheimer’s disease: a meta-analysis and systematic review. Neural Regen Res. 2022;17:2381–2390. doi:10.4103/1673-5374.335832
  • Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging potential of exosomal non-coding RNA in parkinson’s disease: a review. Front Aging Neurosci. 2022;14:819836. doi:10.3389/fnagi.2022.819836
  • Ji Q, Ji Y, Peng J, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One. 2016;11:e0163645. doi:10.1371/journal.pone.0163645
  • Chen Y, Song Y, Huang J, et al. Increased circulating exosomal MiRNA-223 is associated with acute ischemic stroke. Front Neurol. 2017;8:57. doi:10.3389/fneur.2017.00057
  • Xu Y, Hu Y, Xu S, Liu F, Gao Y. Exosomal MicroRNAs as potential biomarkers and therapeutic agents for acute ischemic stroke: new expectations. Front Neurol. 2021;12:747380. doi:10.3389/fneur.2021.747380
  • van Kralingen JC, McFall A, Ord ENJ, et al. Altered extracellular vesicle MicroRNA expression in ischemic stroke and small vessel disease. Transl Stroke Res. 2019;10:495–508. doi:10.1007/s12975-018-0682-3
  • Zhao W, Sun W, Li S, et al. Exosomal MiRNA-223-3p as potential biomarkers in patients with cerebral small vessel disease cognitive impairment. Ann Transl Med. 2021;9:1781. doi:10.21037/atm-21-6086
  • Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–838. doi:10.1016/s1474-4422(13)70124-8
  • Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149:351–356. doi:10.2214/ajr.149.2.351
  • Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R. Pathogeneses and imaging features of cerebral white matter lesions of vascular origins. Aging Dis. 2021;12:2031–2051. doi:10.14336/AD.2021.0414
  • Staals J, Makin SDJ, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology. 2014;83:1228–1234. doi:10.1212/WNL.0000000000000837
  • Kim J-M, Park K-Y, Kim HR, et al. Association of bone mineral density to cerebral small vessel disease burden. Neurology. 2021;96:e1290–e1300. doi:10.1212/WNL.0000000000011526
  • Liao Z, Sun H, Chang Y, Chen H. The expression and clinical significance of MiRNA-183 in cerebral ischemia-reperfusion injury patients with cerebral small vessel disease. Ann Transl Med. 2020;8:1005. doi:10.21037/atm-20-5335
  • Maier N, Gatterer C, Haider P, et al. MiRNA let-7a and let-7d are induced by globotriaosylceramide via NF-KB activation in Fabry disease. Genes. 2021;12:1184. doi:10.3390/genes12081184
  • Salamon I, Biagini E, Kunderfranco P, et al. Circulating MiR-184 is a potential predictive biomarker of cardiac damage in Anderson-Fabry disease. Cell Death Dis. 2021;12:1150. doi:10.1038/s41419-021-04438-5
  • Gao Z, Gao Q, Lv X. MicroRNA-668-3p protects against oxygen-glucose deprivation in a rat H9c2 cardiomyocyte model of ischemia-reperfusion injury by targeting the Stromal Cell-Derived Factor-1 (SDF-1)/CXCR4 signaling pathway. Med Sci Monit. 2020;26:e919601. doi:10.12659/MSM.919601
  • Luís A, Hackl M, Jafarmadar M, et al. Circulating MiRNAs associated with ER Stress And Organ Damage In A Preclinical Model Of Trauma Hemorrhagic Shock. Front Med. 2020;7:568096. doi:10.3389/fmed.2020.568096
  • Wei Q, Sun H, Song S, et al. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J Clin Invest. 2018;128:5448–5464. doi:10.1172/JCI121859
  • He J, Zhang X. MiR-668 inhibitor attenuates mitochondrial membrane potential and protects against neuronal apoptosis in cerebral ischemic stroke. Folia Neuropathol. 2020;58:22–29. doi:10.5114/fn.2020.94003
  • Li H, Zhao J, Liu B, et al. MicroRNA-320 targeting neuropilin 1 inhibits proliferation and migration of vascular smooth muscle cells and neointimal formation. Int J Med Sci. 2019;16:106–114. doi:10.7150/ijms.28093
  • Ding D, Jiang H, He Y, Li X, Liu X. MiR-320-3p regulates the proliferation, migration and apoptosis of hypoxia-induced pulmonary arterial smooth muscle cells via KLF5 and HIF1α. Am J Transl Res. 2021;13:2283–2295.
  • Chen Z, Yang Z, Li X, et al. MicroRNA-320a prevent müller cells from hypoxia injury by targeting aquaporin-4. J Cell Biochem. 2020;121(12):4711–4723. doi:10.1002/jcb.29524
  • Liao M, Zou S, Bao Y, et al. Matrix metalloproteinases are regulated by MicroRNA 320 in macrophages and are associated with aortic dissection. Exp Cell Res. 2018;370:98–102. doi:10.1016/j.yexcr.2018.06.011
  • Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation. 2021;18:276. doi:10.1186/s12974-021-02325-6
  • Prior R, Verschoren S, Vints K, et al. HDAC3 inhibition stimulates myelination in a CMT1A mouse model. Mol Neurobiol. 2022;59:3414–3430. doi:10.1007/s12035-022-02782-x
  • Ru X, Qu J, Li Q, et al. MiR-706 alleviates white matter injury via downregulating PKCα/MST1/NF-ΚB pathway after subarachnoid hemorrhage in mice. Exp Neurol. 2021;341:113688. doi:10.1016/j.expneurol.2021.113688
  • Giorgi Silveira R, Perelló Ferrúa C, Do Amaral CC, Fernandez Garcia T, de Souza KB, Nedel F. MicroRNAs expressed in neuronal differentiation and their associated pathways: systematic review and bioinformatics analysis. Brain Res Bull. 2020;157:140–148. doi:10.1016/j.brainresbull.2020.01.009
  • Wang W, Sun G, Zhang L, Shi L, Zeng Y. Circulating MicroRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. J Stroke Cerebrovasc Dis. 2014;23:2607–2613. doi:10.1016/j.jstrokecerebrovasdis.2014.06.002
  • Dolati S, Aghebati-Maleki L, Ahmadi M, et al. Nanocurcumin restores aberrant MiRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell Physiol. 2018;233:5222–5230. doi:10.1002/jcp.26301
  • Cheng Z, Qiu S, Jiang L, et al. MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1. J Clin Immunol. 2013;33:567–576. doi:10.1007/s10875-012-9834-5
  • Noz MP, Ter Telgte A, Wiegertjes K, et al. Trained immunity characteristics are associated with progressive cerebral small vessel disease. Stroke. 2018;49:2910–2917. doi:10.1161/STROKEAHA.118.023192
  • Du H, Zhao Y, Yin Z, Wang DW, Chen C. The role of MiR-320 in glucose and lipid metabolism disorder-associated diseases. Int J Biol Sci. 2021;17:402–416. doi:10.7150/ijbs.53419
  • Farkas E, Donka G, de Vos RAI, Mihály A, Bari F, Luiten PGM. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol. 2004;108:57–64. doi:10.1007/s00401-004-0864-9
  • Farkas E, Annaházi A, Institóris Á, Mihály A, Luiten PGM, Bari F. Diazoxide and dimethyl sulphoxide alleviate experimental cerebral hypoperfusion-induced white matter injury in the rat brain. Neurosci Lett. 2005;373:195–199. doi:10.1016/j.neulet.2004.10.007
  • Wang R, Pu H, Ye Q, et al. Transforming growth factor beta-activated kinase 1-dependent microglial and macrophage responses aggravate long-term outcomes after ischemic stroke. Stroke. 2020;51:975–985. doi:10.1161/STROKEAHA.119.028398
  • Xu C, Zhang Z, Liu N, et al. Small extracellular vesicle-mediated MiR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat Commun. 2022;13:2467. doi:10.1038/s41467-022-29029-6
  • Yin M, Wang X, Yao G, et al. Transactivation of MicrornA-320 by MicroRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289(26):18239–18257. doi:10.1074/jbc.M113.546044
  • Zhang K, Liu Z, Tang Y, et al. LncRNA NONHSAT114552 sponges MiR-320d to promote proliferation and invasion of chordoma through upregulating NRP1. Front Pharmacol. 2021;12:773918. doi:10.3389/fphar.2021.773918
  • Chachaj A, Gąsiorowski K, Szuba A, Sieradzki A, Leszek J. Lymphatic system in the brain clearance mechanisms - new therapeutic perspectives for Alzheimer’s disease. Curr Neuropharmacol. 2022. doi:10.2174/1570159X20666220411091332
  • Ma L, Yu H-J, Gan S-W, et al. P53-mediated oligodendrocyte apoptosis initiates demyelination after compressed spinal cord injury by enhancing ER-mitochondria interaction and E2F1 expression. Neurosci Lett. 2017;644:55–61. doi:10.1016/j.neulet.2017.02.038
  • Sherafat A, Pfeiffer F, Reiss AM, Wood WM, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun. 2021;12:2265. doi:10.1038/s41467-021-22532-2
  • Grau-Olivares M, Arboix A, Junqué C, Arenaza-Urquijo EM, Rovira M, Bartrés-Faz D. Progressive gray matter atrophy in lacunar patients with vascular mild cognitive impairment. Cerebrovasc Dis. 2010;30:157–166. doi:10.1159/000316059
  • Jickling GC, Chen C. Rating total cerebral small-vessel disease: does it add up? Neurology. 2014;83:1224–1225. doi:10.1212/wnl.0000000000000843
  • Yilmaz P, Ikram MK, Niessen WJ, Ikram MA, Vernooij MW. Practical small vessel disease score relates to stroke, dementia, and death. Stroke. 2018;49:2857–2865. doi:10.1161/strokeaha.118.022485
  • Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain. 2007;130(8):1988–2003. doi:10.1093/brain/awl387
  • Rudilosso S, Rodríguez-Vázquez A, Urra X, Arboix A. The potential impact of neuroimaging and translational research on the clinical management of lacunar stroke. IJMS. 2022;23:1497. doi:10.3390/ijms23031497