169
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Application of Multiple Magnetic Resonance Scanning Techniques in Evaluating the Stability of Intracranial Aneurysms

, , , ORCID Icon, &
Pages 2003-2011 | Received 20 Jan 2023, Accepted 28 Apr 2023, Published online: 24 May 2023

References

  • Majewska P, Gulati S, Øie L, et al. Smoking habits and detection rate of unruptured intracranial aneurysms and incidence rate of subarachnoid haemorrhage in Norway between 2008 and 2015. Acta Neurochir. 2020;162(12):3161–3165. doi:10.1007/s00701-020-04541-0
  • Liang ES, Mahady K, Coulthard A, et al. Treatment of a middle cerebral artery aneurysm in the setting of Loeys-Dietz syndrome: case report and review of literature. Radiol Case Rep. 2021;16(1):48–50. doi:10.1016/j.radcr.2020.10.012
  • Darkwah OM, Gembruch O, Pierscianek D, et al. Post-treatment antiplatelet therapy reduces risk for delayed cerebral ischemia due to aneurysmal subarachnoid hemorrhage. Neurosurgery. 2019;85(6):827–833. doi:10.1093/neuros/nyy550
  • Greving JP, Wermer MJH, Brown RD, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66. doi:10.1016/S1474-4422(13)70263-1
  • Schwab KE, Gailloud P, Wyse G, Tamargo RJ. Limitations of magnetic resonance imaging and magnetic resonance angiography in the diagnosis of intracranial aneurysms. Neurosurgery. 2008;63:1.
  • Wang X, Benson JC, Jagadeesan B, et al. Giant cerebral aneurysms: comparing CTA, MRA, and digital subtraction angiography assessments. J Neuroimaging. 2020;30(3):335–341. doi:10.1111/jon.12712
  • You SH, Kim B, Yang K-S, et al. Ultrashort echo time magnetic resonance angiography in follow-up of intracranial aneurysms treated with endovascular coiling: comparison of time-of-flight, pointwise encoding time reduction with radial acquisition, and contrast-enhanced magnetic resonance angiography. Neurosurgery. 2021;88(2):E179–E189. doi:10.1093/neuros/nyaa467
  • Di Bonaventura R, Sturiale CL, Latour K, et al. Comparison between minipterional craniotomy associated with focused sylvian fissure opening and standard pterional approach with extended sylvian fissure dissection for treatment of unruptured middle cerebral artery aneurysms. World Neurosurg. 2021;146:e1293–e1300. doi:10.1016/j.wneu.2020.11.150
  • Sherif C, Krssak M. Evaluation of cerebral aneurysm wall thickness in experimental aneurysms: comparison of 3T-MR imaging with direct microscopic measurements. Acta Neurochir. 2018;160(4):759. doi:10.1007/s00701-018-3476-1
  • Lehman VT, Brinjikji W, Mossa-Basha M, et al. Conventional and high-resolution vessel wall MRI of intracranial aneurysms: current concepts and new horizons. J Neurosurg. 2018;128(4):969–981. doi:10.3171/2016.12.JNS162262
  • Lehman VT, Brinjikji W, Kallmes DF, et al. Clinical interpretation of high-resolution vessel wall MRI of intracranial arterial diseases. Br J Radiol. 2016;89(1067):20160496. doi:10.1259/bjr.20160496
  • Zhai XD, Yu J-X, Li C-J, et al. Morphological characteristics of pericallosal artery aneurysms and their high propensity for rupture. World Neurosurg. 2020;133:e320–e326. doi:10.1016/j.wneu.2019.09.003
  • Duan Z, Li Y, Guan S, et al. Morphological parameters and anatomical locations associated with rupture status of small intracranial aneurysms. Sci Rep. 2018;8(1):6440. doi:10.1038/s41598-018-24732-1
  • Gu Y, Zhang Y, Luo M, et al. Risk factors for asymptomatic intracranial small aneurysm rupture determined by electrocardiographic-gated 4D computed tomographic (CT) angiography. Med Sci Monit. 2020;26:e921835. doi:10.12659/MSM.921835
  • Darkwah OM, Jabbarli R, Radbruch A, et al. Blind date with an aneurysm: acute M1 middle cerebral artery thrombus with native computed tomography scan suggesting aneurysm rupture. World Neurosurg. 2019;132:103–105. doi:10.1016/j.wneu.2019.08.206
  • Komunski P, Nowosławska E, Zakrzewski K, et al. Superior hypophyseal artery ruptured aneurysm in a 5-month-old child presenting as an acute subdural hematoma: a case report. Pediatr Neurosurg. 2020;55(6):374–379. doi:10.1159/000511674
  • Wu Y, Li Z, Shi Y, et al. Exome sequencing identifies LOXL2 mutation as a cause of familial intracranial aneurysm. World Neurosurg. 2018;109:e812–e818. doi:10.1016/j.wneu.2017.10.094
  • Chambers WR, Harper BJ, Simpson JR. Familial incidence of congenital aneurysms of cerebral arteries: report of cases of ruptured aneurysms in father and son. J Am Med Assoc. 1954;155(4):358–359. doi:10.1001/jama.1954.73690220001007
  • Cebral JR, Mut F, Weir J, et al. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol. 2011;32(1):145–151. doi:10.3174/ajnr.A2419
  • Hussain S, Barbarite E, Chaudhry NS, et al. Search for biomarkers of intracranial aneurysms: a systematic review. World Neurosurg. 2015;84(5):1473–1483. doi:10.1016/j.wneu.2015.06.034
  • Watanabe T. Neopterin derivatives – a novel therapeutic target rather than biomarker for atherosclerosis and related diseases. Vasa. 2021;50(3):165–173. doi:10.1024/0301-1526/a000903
  • Roa JA, Zanaty M, Ishii D, et al. Decreased contrast enhancement on high-resolution vessel wall imaging of unruptured intracranial aneurysms in patients taking aspirin. J Neurosurg. 2020;134(3):902–908. doi:10.3171/2019.12.JNS193023
  • Rojas HA, Fernandes KSDS, Ottone MR, et al. Levels of MMP-9 in patients with intracranial aneurysm: relation with risk factors, size and clinical presentation. Clin Biochem. 2018;55:63–68. doi:10.1016/j.clinbiochem.2018.03.005
  • Patzig M, Forbrig R, Gruber M, et al. The clinical value of ceMRA versus DSA for follow-up of intracranial aneurysms treated by coil embolization: an assessment of occlusion classifications and impact on treatment decisions. Eur Radiol. 2021;31(6):4104–4113. doi:10.1007/s00330-020-07492-3
  • Zou L, Hou Y, Yu B, et al. The effect of intravascular interventional embolization and craniotomy on MMP-2, MMP-9 and caspase3 in serum of intracranial aneurysm patients. Exp Ther Med. 2018;16(6):4511–4518. doi:10.3892/etm.2018.6740
  • Lai XL, Deng Z-F, Zhu X-G, et al. Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-κB signaling pathway mediated inflammatory response. Biosci Rep. 2019;39(3). doi:10.1042/BSR20181909
  • Signorelli F, Sela S, Gesualdo L, et al. Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: a systematic review. World Neurosurg. 2018;115:234–244. doi:10.1016/j.wneu.2018.04.143
  • Xu Z, Rui Y-N, Hagan JP, et al. Intracranial aneurysms: pathology, genetics, and molecular mechanisms. Neuromolecular Med. 2019;21(4):325–343. doi:10.1007/s12017-019-08537-7
  • Gitto L, Richardson TE, Serinelli S, et al. Massive intracranial bleeding due to the rupture of a rare spontaneous pseudoaneurysm of the middle cerebral artery in a pediatric patient: case report with clinical, radiological, and pathologic findings. Forensic Sci Med Pathol. 2019;15(3):474–480. doi:10.1007/s12024-019-00122-5
  • Miyata H, Imai H, Koseki H, et al. Vasa vasorum formation is associated with rupture of intracranial aneurysms. J Neurosurg;2019. 1–11. doi:10.3171/2019.5.JNS19405
  • Sadatomo T, Yuki K, Migita K, et al. Morphological differences between ruptured and unruptured cases in middle cerebral artery aneurysms. Neurosurgery. 2008;62(3):602.
  • Tremmel M, Dhar S, Levy EI, et al. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery. 2009;64(4):622–630. doi:10.1227/01.NEU.0000341529.11231.69
  • Khattar NK, White AC, Adams SW, et al. MRI SPACE sequence confirmation of occluded MCA M2 dissection stump masquerading as a ruptured MCA aneurysm. BMJ Case Rep. 2018;2018.
  • Chihi M, Jabbarli R, Gembruch O, et al. A rare case of a completely thrombosed bilobed giant intracranial aneurysm of the anterior cerebral artery with spontaneous parent vessel thrombosis: case report. BMC Neurol. 2019;19(1):297. doi:10.1186/s12883-019-1529-6
  • Rinkel G. Management of patients with unruptured intracranial aneurysms. Curr Opin Neurol. 2019;32(1):49–53. doi:10.1097/WCO.0000000000000642
  • Razaghi R, Biglari H, Karimi A. Risk of rupture of the cerebral aneurysm in relation to traumatic brain injury using a patient-specific fluid-structure interaction model. Comput Methods Programs Biomed. 2019;176:9–16. doi:10.1016/j.cmpb.2019.04.015
  • Gew J, Sokol D, Gallo P, et al. De novo distal middle cerebral artery aneurysm post-excision of intracerebral arteriovenous malformation in an 8-year old. Childs Nerv Syst. 2019;35(11):2211–2218. doi:10.1007/s00381-019-04328-4
  • Zwarzany L, Tyburski E, Poncyljusz W. High-resolution vessel wall magnetic resonance imaging of small unruptured intracranial aneurysms. J Clin Med. 2021;10(2):225. doi:10.3390/jcm10020225
  • Texakalidis P, Sweid A, Mouchtouris N, et al. Aneurysm formation, growth, and rupture: the biology and physics of cerebral aneurysms. World Neurosurg. 2019;130:277–284. doi:10.1016/j.wneu.2019.07.093
  • Gu Y, Miao C, Li A, et al. High-Resolution Magnetic Resonance Imaging (HR-MRI) evaluation of the distribution and characteristics of intra-aneurysm thrombosis to improve clinical diagnosis of thrombotic intracranial aneurysm. Med Sci Monit. 2022;28:e935613. doi:10.12659/MSM.935613