243
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effects of Three-Hour Wearing Personal Protective Equipment on Heart Rate Variability in Healthcare Workers for the Treatment of COVID-19 Patients

ORCID Icon, ORCID Icon, , , ORCID Icon, , , , , , , ORCID Icon, , , ORCID Icon, ORCID Icon & show all
Pages 2531-2539 | Received 25 Mar 2023, Accepted 13 Jun 2023, Published online: 16 Jun 2023

References

  • Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Med Res. 2020;7(1):11. doi:10.1186/s40779-020-00240-0
  • WHO. WHO Director-General’s opening remarks at the media briefing on COVID- 19: 11 March 2020; 2020. Available at: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-The-media-briefing-on-. Accessed May 14, 2023.
  • World Health Organization. Rational Use of Personal Protective Equipment for Coronavirus Disease (COVID-19) and Considerations During Severe Shortages: Interim Guidance; 2020.
  • Tabah A, Ramanan M, Laupland KB, et al. Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): an international survey. Research Support, Non-U.S. Gov’t. J Crit Care. 2020;59:70–75. doi:10.1016/j.jcrc.2020.06.005
  • Battista RA, Ferraro M, Piccioni LO, Malzanni GE, Bussi M. Personal Protective Equipment (PPE) in COVID 19 Pandemic: related Symptoms and Adverse Reactions in Healthcare Workers and General Population. Observational Study. J Occupational Environ Med. 2021;63(2):e80–e85. doi:10.1097/JOM.0000000000002100
  • Lin P, Zhu S, Huang Y, et al. Adverse skin reactions among healthcare workers during the coronavirus disease 2019 outbreak: a survey in Wuhan and its surrounding regions. Letter. Br J Dermatol. 2020;183(1):190–192. doi:10.1111/bjd.19089
  • Jiang Q, Liu Y, Wei W, et al. The prevalence, characteristics, and related factors of pressure injury in medical staff wearing personal protective equipment against COVID-19 in China: a multicentre cross-sectional survey. Multicenter Study. Int Wound J. 2020;17(5):1300–1309. doi:10.1111/iwj.13391
  • Gefen A, Ousey K. Update to device-related pressure ulcers: SECURE prevention. COVID-19, face masks and skin damage. J Wound Care. 2020;29(5):245–259. doi:10.12968/jowc.2020.29.5.245
  • Choudhury A, Singh M, Khurana DK, et al. Physiological Effects of N95 FFP and PPE in Healthcare Workers in COVID Intensive Care Unit: a Prospective Cohort Study. Indian j Critical Care Med. 2020;24(12):1169–1173. doi:10.5005/jp-journals-10071-23671
  • Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: basic Concepts and Clinical Implications. Review. Front Behav Neurosci. 2018;12:127. doi:10.3389/fnbeh.2018.00127
  • Aristizabal JP, Navegantes R, Melo E, Pereira A. Use of Heart Rate Variability Biofeedback to Reduce the Psychological Burden of Frontline Healthcare Professionals Against COVID-19. Front Psychol. 2020;11:572191. doi:10.3389/fpsyg.2020.572191
  • Naspe ESC. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Guideline Practice Guideline. Circulation. 1996;93(5):1043–1065.
  • Perkiomaki JS, Huikuri HV, Koistinen JM, Makikallio T, Castellanos A, Myerburg RJ. Heart rate variability and dispersion of QT interval in patients with vulnerability to ventricular tachycardia and ventricular fibrillation after previous myocardial infarction. Research Support, Non-U.S. Gov’t. J Am Coll Cardiol. 1997;30(5):1331–1338. doi:10.1016/s0735-1097(97)00301-x
  • Melillo P, Izzo R, De Luca N, Pecchia L. Heart rate variability and target organ damage in hypertensive patients. Research Support, Non-U.S. Gov’t. BMC Cardiovasc Disord. 2012;12:105. doi:10.1186/1471-2261-12-105
  • Tian Z, Bong-Young K, Myung-Jin B. A Study on the Effect of Wearing Masks on Stress Response. Int J Eng Res Technol. 2020;13:807–813.
  • Billman GE. Heart rate variability - a historical perspective. Front Physiol. 2011;2:86. doi:10.3389/fphys.2011.00086
  • Roberge RJ, Coca A, Williams WJ, Powell JB, Palmiero AJ. Physiological impact of the N95 filtering facepiece respirator on healthcare workers. Comparative Study. Respir Care. 2010;55(5):569–577.
  • Kim JH, Benson SM, Roberge RJ. Pulmonary and heart rate responses to wearing N95 filtering facepiece respirators. Am J Infect Control. 2013;41(1):24–27. doi:10.1016/j.ajic.2012.02.037
  • Laferty EA, McKay RT. Physiologic effects and measurement of carbon dioxide and oxygen levels during qualitative respirator fit testing. J Chem Health Safe. 2006;13:22–28. doi:10.1021/acs.chas.8b13507
  • Gaikwad RP, Banodkar AB, Nandgaonkar VP. Respiratory consequences of N95 mask during Covid-19 pandemic- an observational study. Int J Health Sci Res. 2021;11(4):55–61. doi:10.52403/ijhsr.20210407
  • Li Y, Tokura H, Guo YP, et al. Effects of wearing N95 and surgical facemasks on heart rate, thermal stress and subjective sensations. Comparative Study. Int Arch Occup Environ Health. 2005;78(6):501–509. doi:10.1007/s00420-004-0584-4
  • Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health. 2017;5:258. doi:10.3389/fpubh.2017.00258
  • Penttila J, Helminen A, Jartti T, et al. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol. 2001;21(3):365–376. doi:10.1046/j.1365-2281.2001.00337.x
  • Pakanati S, Venkata MG, Prabhakara R. Heart rate variability related to N95 respirator use in interns during COVID-19 pandemic. Int J Sci Res. 2021;10(10):69–70. doi:10.36106/ijsr
  • Delaney JP, Brodie DA. Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept Mot Skills. 2000;91(2):515–524. doi:10.2466/pms.2000.91.2.515
  • Lucini D, Di Fede G, Parati G, Pagani M. Impact of chronic psychosocial stress on autonomic cardiovascular regulation in otherwise healthy subjects. Research Support, Non-U.S. Gov’t. Hypertension. 2005;46(5):1201–1206. doi:10.1161/01.HYP.0000185147.32385.4b
  • Schwartz AR, Gerin W, Davidson KW, et al. Toward a causal model of cardiovascular responses to stress and the development of cardiovascular disease. Psychosom Med. 2003;65(1):22–35. doi:10.1097/01.psy.0000046075.79922.61
  • Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and Heart Rate Variability: a Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018;15(3):235–245. doi:10.30773/pi.2017.08.17
  • Lennartsson AK, Jonsdottir I, Sjors A. Low heart rate variability in patients with clinical burnout. Int J Psychophysiol. 2016;110:171–178. doi:10.1016/j.ijpsycho.2016.08.005
  • Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension. 2003;42(6):1106–1111. doi:10.1161/01.HYP.0000100444.71069.73
  • Singh JP, Larson MG, Tsuji H, Evans JC, O’Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 1998;32(2):293–297. doi:10.1161/01.hyp.32.2.293
  • Mori H, Saito I, Eguchi E, Maruyama K, Kato T, Tanigawa T. Heart rate variability and blood pressure among Japanese men and women: a community-based cross-sectional study. Hypertens Res. 2014;37(8):779–784. doi:10.1038/hr.2014.73
  • Ishida S, Nakagawa M, Fujino T, Yonemochi H, Saikawa T, Ito M. Circadian variation of QT interval dispersion: correlation with heart rate variability. J Electrocardiol. 1997;30(3):205–210. doi:10.1016/s0022-0736(97)80005-2
  • Arai K, Nakagawa Y, Iwata T, Horiguchi H, Murata K. Relationships between QT interval and heart rate variability at rest and the covariates in healthy young adults. Auton Neurosci. 2013;173(1–2):53–57. doi:10.1016/j.autneu.2012.11.006
  • Ishii N, Dakeishi M, Sasaki M, Iwata T, Murata K. Cardiac autonomic imbalance in female nurses with shift work. Auton Neurosci. 2005;122(1–2):94–99. doi:10.1016/j.autneu.2005.08.010
  • McLellan TM, Daanen HA, Cheung SS. Encapsulated environment. Compr Physiol. 2013;3(3):1363–1391. doi:10.1002/cphy.c130002
  • White MK, Vercruyssen M, Hodous TK. Work tolerance and subjective responses to wearing protective clothing and respirators during physical work. Ergonomics. 1989;32(9):1111–1123. doi:10.1080/00140138908966878
  • de Korte JQ, Bongers C, Catoire M, Kingma BRM, Eijsvogels TMH. Cooling vests alleviate perceptual heat strain perceived by COVID-19 nurses. Temperature. 2022;9(1):103–113. doi:10.1080/23328940.2020.1868386
  • Liu Q, Luo D, Haase JE, et al. The experiences of health-care providers during the COVID-19 crisis in China: a qualitative study. Lancet Global Health. 2020;8(6):e790–e798. doi:10.1016/S2214-109X(20)30204-7
  • Davey SL, Lee BJ, Robbins T, Randeva H, Thake CD. Heat stress and PPE during COVID-19: impact on healthcare workers’ performance, safety and well-being in NHS settings. J Hosp Infect. 2021;108:185–188. doi:10.1016/j.jhin.2020.11.027
  • Tang M, He Y, Zhang X, et al. The acute effects of temperature variability on heart rate variability: a repeated-measure study. Environ Res. 2021;194:110655. doi:10.1016/j.envres.2020.110655
  • Bruce-Low SS, Cotterrell D, Jones GE. Heart rate variability during high ambient heat exposure. Aviat Space Environ Med. 2006;77(9):915–920.
  • Yamamoto S, Iwamoto M, Inoue M, Harada N. Evaluation of the effect of heat exposure on the autonomic nervous system by heart rate variability and urinary catecholamines. Evaluation Study. J Occup Health. 2007;49(3):199–204. doi:10.1539/joh.49.199
  • Ren C, O’Neill MS, Park SK, Sparrow D, Vokonas P, Schwartz J. Ambient temperature, air pollution, and heart rate variability in an aging population. Am J Epidemiol. 2011;173(9):1013–1021. doi:10.1093/aje/kwq477
  • Hayıroğlu M, Çinier G, Yüksel G, et al. Effect of a mobile application and smart devices on heart rate variability in diabetic patients with high cardiovascular risk: a sub-study of the LIGHT randomized clinical trial. Kardiol Pol. 2021;79(11):1239–1244. doi:10.33963/KP.a2021.0112
  • Asarcikli LD, Hayiroglu M, Osken A, Keskin K, Kolak Z, Aksu T. Heart rate variability and cardiac autonomic functions in post-COVID period. J Interv Card Electrophysiol. 2022;63(3):715–721. doi:10.1007/s10840-022-01138-8