279
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Role of RNA Splicing Mutations in Diffuse Large B Cell Lymphoma

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 2469-2480 | Received 01 Apr 2023, Accepted 08 Jun 2023, Published online: 15 Jun 2023

References

  • de Leval L, Jaffe ES. Lymphoma classification. Cancer J. 2020;26(3):176–185. doi:10.1097/PPO.0000000000000451
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi:10.1182/blood-2016-01-643569
  • Moghanibashi M, Mohamadynejad P. Splicing in Cancer. hematologica. 2022;14(23):214.
  • Asmar F, Punj V, Christensen J, et al. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica. 2013;98(12):1912. doi:10.3324/haematol.2013.088740
  • Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat med. 2018;24(5):679–690. doi:10.1038/s41591-018-0016-8
  • Andrades A, Álvarez-Pérez JC, Patiño-Mercau JR, Cuadros M, Baliñas-Gavira C, Medina PP. Recurrent splice site mutations affect key diffuse large B-cell lymphoma genes. Blood. 2022;139(15):2406–2410. doi:10.1182/blood.2021011708
  • Reddy A, Zhang J, Davis NS, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481–94.e15. doi:10.1016/j.cell.2017.09.027
  • Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–1407. doi:10.1056/NEJMoa1801445
  • Wang X, Hong Y, Meng S, et al. A novel immune-related epigenetic signature based on the transcriptome for predicting the prognosis and therapeutic response of patients with diffuse large B-cell lymphoma. Clin Immun. 2022;243:109105. doi:10.1016/j.clim.2022.109105
  • Zhang S, Zhang T, Liu H, et al. Tracking the evolution of untreated high‐intermediate/high‐risk diffuse large B‐cell lymphoma by circulating tumour DNA. Br J Haematol. 2022;196(3):617–628. doi:10.1111/bjh.17894
  • Zhang H, Lu Y, Zhang T, et al. PIM1 genetic alterations associated with distinct molecular profiles, phenotypes and drug responses in diffuse large B‐cell lymphoma. Clin Transl Med. 2022;12(4). doi:10.1002/ctm2.808
  • Hahn CN, Venugopal P, Scott HS, Hiwase DK. Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy. Immunol Rev. 2015;263(1):257–278. doi:10.1111/imr.12241
  • Ebert B, Bernard OA. Mutations in RNA splicing machinery in human cancers. N Engl J Med. 2011;365(26):2534–2535. doi:10.1056/NEJMe1111584
  • Saez B, Walter MJ, Graubert TA. Splicing factor gene mutations in hematologic malignancies. Blood. 2017;129(10):1260–1269. doi:10.1182/blood-2016-10-692400
  • Akinyi MV, Frilander MJ. At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression. Front Genet. 2021;12:700744. doi:10.3389/fgene.2021.700744
  • Chen W, Moore MJ. Spliceosomes. Curr. 2015;25(5):R181–R183. doi:10.1016/j.cub.2014.11.059
  • Kitamura K, Nimura K. Regulation of RNA splicing: aberrant splicing regulation and therapeutic targets in cancer. Cells. 2021;10(4):923. doi:10.3390/cells10040923
  • Olthof AM, White AK, Mieruszynski S, et al. Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns. Nucleic Acids Res. 2021;49(6):3524–3545. doi:10.1093/nar/gkab118
  • Chen S, Benbarche S, Abdel-Wahab O. Splicing factor mutations in hematologic malignancies. Blood. 2021;138(8):599–612. doi:10.1182/blood.2019004260
  • Gurnari C, Pagliuca S, Visconte V. Alternative splicing in myeloid malignancies. Biomedicine. 2021;9(12):1844.
  • Leivonen S, Taskinen M, Cervera A, et al. Alternative splicing discriminates molecular subtypes and has prognostic impact in diffuse large B-cell lymphoma. Blood Cancer j. 2017;7(8):596. doi:10.1038/bcj.2017.71
  • Taylor J, Lee SC. Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies. Genes Chromosom Cancer. 2019;58(12):889–902. doi:10.1002/gcc.22784
  • Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–119. doi:10.1038/nature09671
  • Schneider M, Schneider S, Zühlke‐Jenisch R, et al. Alterations of the CD58 gene in classical Hodgkin lymphoma. Gene Chromosom Cancer. 2015;54(10):638–645. doi:10.1002/gcc.22276
  • Takeuchi T, Yamaguchi M, Kobayashi K, et al. MYD88, CD79B, and CARD11 gene mutations in CD5‐positive diffuse large B‐cell lymphoma. Cancer. 2017;123(7):1166–1173. doi:10.1002/cncr.30404
  • Voropaeva EN, Pospelova TI, Voevoda MI, Maksimov VN, Orlov YL, Seregina OB. Clinical aspects of TP53 gene inactivation in diffuse large B-cell lymphoma. BMC Genom. 2019;12(2):35–44. doi:10.1186/s12920-019-0484-9
  • Chapuy B, Stewart C, Dunford AJ, et al. Author Correction: molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat med. 2018;24(8):1290–1291. doi:10.1038/s41591-018-0097-4
  • Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome. Annu Rev Biochem. 2020;89(1):359–388. doi:10.1146/annurev-biochem-091719-064225
  • Zhou J, Chng WJ. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia. Stem Cell Investig. 2017;4:6. doi:10.21037/sci.2017.01.06
  • Dobashi A. Molecular pathogenesis of diffuse large B-cell lymphoma. JCEH. 2016;56(2):71–78. doi:10.3960/jslrt.56.71
  • Jung H, Lee KS, Choi JK. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene. 2021;40(7):1347–1361. doi:10.1038/s41388-020-01614-3
  • Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell. 2021;13(8):559–579.
  • Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6(1):78. doi:10.1038/s41392-021-00486-7
  • Aggarwal V, Das A, Bal A, et al. MYD88, CARD11, and CD79B oncogenic mutations are rare events in the Indian cohort of de novo nodal diffuse large B-cell lymphoma. AIMM. 2019;27(4):311–318. doi:10.1097/PAI.0000000000000585
  • Caeser R, Di Re M, Krupka JA, et al. Genetic modification of primary human B cells to model high-grade lymphoma. Natcommun. 2019;10(1):1–16.
  • Baliñas-Gavira C, Rodríguez MI, Andrades A, et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia. 2020;34(10):2722–2735. doi:10.1038/s41375-020-0919-5
  • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–511. doi:10.1038/35000501
  • Jallades L, Baseggio L, Sujobert P, et al. Exome sequencing identifies recurrent BCOR alterations and the absence of KLF2, TNFAIP3 and MYD88 mutations in splenic diffuse red pulp small B-cell lymphoma. Haematologica. 2017;102(10):1758–1766. doi:10.3324/haematol.2016.160192
  • Koens L, Zoutman WH, Ngarmlertsirichai P, et al. Nuclear factor-κB pathway-activating gene aberrancies in primary cutaneous large B-cell lymphoma, leg type. J Invest Dermatol. 2014;134(1):290–292. doi:10.1038/jid.2013.265
  • Cardona Gloria Y, Bernhart SH, Fillinger S, et al. Absence of non-canonical, inhibitory MYD88 splice variants in B cell lymphomas correlates with sustained NF-κB signaling. Front Immunol. 2021;12(8):616–651. doi:10.3389/fimmu.2021.616451
  • Kishimoto T, Ying B-W, Tsuru S, et al. Molecular clock of neutral mutations in a fitness-increasing evolutionary process. PLoS Genet. 2015;11(7):e1005392. doi:10.1371/journal.pgen.1005392
  • Pimentel H, Parra M, Gee S, et al. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2014;42(6):4031–4042. doi:10.1093/nar/gkt1388
  • Turton KB, Annis DS, Rui L, Esnault S, Mosher DF. Ratios of four STAT3 splice variants in human eosinophils and diffuse large B cell lymphoma cells. PLoS One. 2015;10(5):e0127243. doi:10.1371/journal.pone.0127243
  • Zhu F, Wang KB, Rui L. STAT3 activation and oncogenesis in lymphoma. Cancers. 2019;12(1):19. doi:10.3390/cancers12010019
  • Gao J, Sidiropoulou E, Walker I, et al. SGK1 mutations in DLBCL generate hyperstable protein neoisoforms that promote AKT Independence. Blood. 2021;138(11):959–964. doi:10.1182/blood.2020010432
  • Hartmann S, Schuhmacher B, Rausch T, et al. Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia. 2016;30(4):844–853. doi:10.1038/leu.2015.328
  • Pasqualucci L, Compagno M, Houldsworth J, et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. JEM. 2006;203(2):311–317. doi:10.1084/jem.20052204
  • Mandelbaum J, Bhagat G, Tang H, et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell. 2010;18(6):568–579. doi:10.1016/j.ccr.2010.10.030
  • Xu-Monette ZY, Medeiros LJ, Li Y, et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119(16):3668–3683. doi:10.1182/blood-2011-11-366062
  • Zlamalikova L, Moulis M, Ravcukova B, et al. Complex analysis of the TP53 tumor suppressor in mantle cell and diffuse large B-cell lymphomas. Oncol Rep. 2017;38(4):2535–2542. doi:10.3892/or.2017.5891
  • De Miranda NF, Georgiou K, Chen L, et al. Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood. 2014;124(16):2544–2553. doi:10.1182/blood-2013-12-546309
  • Hegde VV. Zinc Finger Protein 36L1 (ZFP36L1): Gene Expression, Regulation and Interactions with Immune Receptors in Human Tumour Cells. India: University of Essex; 2020.
  • Oliveira C, Faoro H, Alves LR, Goldenberg S. RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Genet Mol Biol. 2017;40(12):22–30. doi:10.1590/1678-4685-gmb-2016-0258
  • Jespersen DS, Schönherz AA, Due H, Bøgsted M, Sondergaard TE, Dybkær K. Expression of NOTCH3 exon 16 differentiates Diffuse Large B-cell Lymphoma into molecular subtypes and is associated with prognosis. Sci Rep. 2019;9(1):335. doi:10.1038/s41598-018-36680-x
  • Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer. 2017;17(3):145–159. doi:10.1038/nrc.2016.145
  • Zhang R, Lin P, Yang X, et al. Survival associated alternative splicing events in diffuse large B-cell lymphoma. Am J Transl Res. 2018;10(8):2636.
  • Zhang Y, Dong W, Wang J, Cai J, Wang Z. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro. OncoTargets Ther. 2017;10(18):1655. doi:10.2147/OTT.S129502
  • Fujimoto A, Okada Y, Boroevich KA, Tsunoda T, Taniguchi H, Nakagawa H. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes. Sci Rep. 2016;6(1):1–9. doi:10.1038/srep26483
  • Challa-Malladi M, Lieu YK, Califano O, et al. Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell. 2011;20(6):728–740. doi:10.1016/j.ccr.2011.11.006
  • Li Q, Ma L, Wu Z, et al. Zinc finger E‑box binding homeobox 2 functions as an oncogene in human laryngeal squamous cell carcinoma. Mol Med Rep. 2019;19(6):4545–4552. doi:10.3892/mmr.2019.10126
  • Schmidt A, Schmitz R, Giefing M, et al. Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma. Genes Chromosom Cancer. 2010;49(9):803–809. doi:10.1002/gcc.20789
  • Xu X, Wei T, Zhong W, et al. Down-regulation of cylindromatosis protein phosphorylation by BTK inhibitor promotes apoptosis of non-GCB-diffuse large B-cell lymphoma. Cancer Cell Int. 2021;21(1):195. doi:10.1186/s12935-021-01891-2
  • Zahn M, Kaluszniak B, Möller P, Marienfeld R. The PTP1B mutant PTP1B∆ 2–4 is a positive regulator of the JAK/STAT signalling pathway in Hodgkin lymphoma. J Carcinog. 2021;42(4):517–527. doi:10.1093/carcin/bgaa144
  • Zahn M, Marienfeld R, Melzner I, et al. A novel PTPN1 splice variant upregulates JAK/STAT activity in classical Hodgkin lymphoma cells. Blood. 2017;129(11):1480–1490. doi:10.1182/blood-2016-06-720516
  • Walker MP, Stopford CM, Cederlund M, et al. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci.Signal. 2015;8(362):ra12. doi:10.1126/scisignal.2005654
  • Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment. Immunity. 2007;26(6):715–725. doi:10.1016/j.immuni.2007.05.010
  • Møller MB, Kania P, Ino Y, et al. Frequent disruption of the RB1 pathway in diffuse large B cell lymphoma: prognostic significance of E2F-1 and p16INK4A. Leukemia. 2000;14(5):898–904. doi:10.1038/sj.leu.2401761
  • Alvarado Y, Giles FJ, Swords RT. The PIM kinases in hematological cancers. Expert Rev Hematol. 2012;5(1):81–96. doi:10.1586/ehm.11.69
  • de Miranda NF, Peng R, Georgiou K, et al. DNA repair genes are selectively mutated in diffuse large B cell lymphomas. J Exp Med J EXP MED. 2013;210(9):1729–1742. doi:10.1084/jem.20122842
  • Elfrink S, de Winde CM, van den Brand M, et al. High frequency of inactivating tetraspanin C D37 mutations in diffuse large B-cell lymphoma at immune-privileged sites. Blood. 2019;134(12):946–950. doi:10.1182/blood.2019001185
  • Fan Z, Pei R, Sha K, Chen L, Wang T, Lu Y. Comprehensive characterization of driver genes in diffuse large B cell lymphoma. Oncol Lett. 2020;20(1):382–390. doi:10.3892/ol.2020.11552
  • Krysiak K, Gomez F, White BS, et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129(4):473–483. doi:10.1182/blood-2016-07-729954
  • Guo B, Huang Y, Duan Y, Liao C, Cen H. SGK1 mutation status can further stratify patients with germinal center B‐cell‐like diffuse large B‐cell lymphoma into different prognostic subgroups. Cancer Med. 2022;11(5):1281–1291. doi:10.1002/cam4.4550
  • Gribben JG. The sequence of events in diffuse large B-cell lymphoma. Blood. 2013;122(7):1097–1098. doi:10.1182/blood-2013-06-506089
  • Zhang J, Gu Y, Chen B. Drug-resistance mechanism and new targeted drugs and treatments of relapse and refractory DLBCL. Cancer Manag Res. 2023;245–255. doi:10.2147/CMAR.S400013
  • Vaqué JP, Martínez N, Batlle-López A, et al. B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies. Haematologica. 2014;99(2):222–231. doi:10.3324/haematol.2013.096248
  • Shen R, Fu D, Dong L, et al. Simplified algorithm for genetic subtyping in diffuse large B-cell lymphoma. Signal Transduct Target Ther. 2023;8(1):145. doi:10.1038/s41392-023-01358-y
  • Xu-Monette ZY, Wu L, Visco C, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2012;120(19):3986–3996. doi:10.1182/blood-2012-05-433334
  • Kusowska A, Kubacz M, Krawczyk M, Slusarczyk A, Winiarska M, Bobrowicz M. Molecular aspects of resistance to immunotherapies advances in understanding and management of diffuse large B-cell lymphoma. Int J Mol Sci. 2022;23(3):1501. doi:10.3390/ijms23031501
  • Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat.Med. 2015;21(8):922–926. doi:10.1038/nm.3884
  • Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017;92(1):E11. doi:10.1002/ajh.24594
  • Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, et al. The role of alternative splicing in cancer: from oncogenesis to drug resistance. Drug Resist Updat. 2020;53:100728. doi:10.1016/j.drup.2020.100728
  • Danilov AV, Magagnoli M, Matasar MJ. Translating the biology of diffuse large B-cell lymphoma into treatment. Oncologist. 2022;27(1):57–66. doi:10.1093/oncolo/oyab004