214
Views
0
CrossRef citations to date
0
Altmetric
General Medicine

TRIM5 Promotes Systemic Lupus Erythematosus Through CD4(+) T Cells and Macrophage

, , , , , & show all
Pages 3567-3580 | Received 17 May 2023, Accepted 03 Aug 2023, Published online: 18 Aug 2023

References

  • Fava A, Petri M. Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun. 2019;96:1–13. doi:10.1016/j.jaut.2018.11.001
  • Tsokos GC. Systemic lupus erythematosus. A disease with a complex pathogenesis. Lancet. 2001;358(Suppl):S65–S65. doi:10.1016/S0140-6736(01)07077-5
  • Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol. 2006;28(2):119–130. doi:10.1007/s00281-006-0040-5
  • Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH, et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1177 lupus patients from the GLADEL cohort. Arthritis Rheum. 2005;52(4):1138–1147. doi:10.1002/art.20999
  • Yin X, Kim K, Suetsugu H, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis. 2021;80(5):632–640. doi:10.1136/annrheumdis-2020-219209
  • Cook HT, Botto M. Mechanisms of disease: the complement system and the pathogenesis of systemic lupus erythematosus. Nat Clin Pract Rheumatol. 2006;2(6):330–337. doi:10.1038/ncprheum0191
  • Wu YL, Yang Y, Chung EK, et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet Genome Res. 2008;123(1–4):131–141. doi:10.1159/000184700
  • Dai C, Deng Y, Quinlan A, et al. Genetics of systemic lupus erythematosus: immune responses and end organ resistance to damage. Curr Opin Immunol. 2014;31:87–96. doi:10.1016/j.coi.2014.10.004
  • Han GM, Chen SL, Shen N, et al. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun. 2003;4(3):177–186. doi:10.1038/sj.gene.6363966
  • Tabassum R, Jeong NY, Chung H-J. Big data differential analysis of microglial cell responses in neurodegenerative diseases. Anat Cell Biol. 2019;52(4):469–477. doi:10.5115/acb.19.048
  • Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest. 2001;108(8):1097–1104. doi:10.1172/JCI200114235
  • Wucherpfennig KW. Structural basis of molecular mimicry. J Autoimmun. 2001;16(3):293–302. doi:10.1006/jaut.2000.0499
  • Lehmann PV, Forsthuber T, Miller A, et al. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992;358(6382):155–157. doi:10.1038/358155a0
  • Scherer MT, Ignatowicz L, Winslow GM, et al. Superantigens: bacterial and viral proteins that manipulate the immune system. Annu Rev Cell Biol. 1993;9(1):101–128. doi:10.1146/annurev.cb.09.110193.000533
  • Poole BD, Scofield RH, Harley JB, et al. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006;39(1):63–70. doi:10.1080/08916930500484849
  • Harley JB, Harley ITW, Guthridge JM, et al. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus. 2006;15(11):768–777. doi:10.1177/0961203306070009
  • Barzilai O, Sherer Y, Ram M. Epstein-Barr virus and cytomegalovirus in autoimmune diseases - Are they truly notorious? A preliminary report. In: Shoenfeld Y, Gershwin ME, editors. Autoimmunity, Pt D: Autoimmune Disease, Annus Mirabilis. The New York Academy of Sciences; 2007:567–577.
  • Janahi EMA, Das S, Bhattacharya SN, et al. Cytomegalovirus aggravates the autoimmune phenomenon in systemic autoimmune diseases. Microb Pathog. 2018;120:132–139. doi:10.1016/j.micpath.2018.04.041
  • Min X, Zheng M, Yu Y, et al. Ultraviolet light induces HERV expression to activate RIG-I signalling pathway in keratinocytes. Exp Dermatol. 2022;31(8):1165–1176. doi:10.1111/exd.14568
  • Talotta R. Interaction between long noncoding RNAs and syncytin-1/syncytin-2 genes and transcripts: how noncoding RNAs may affect pregnancy in patients with systemic lupus erythematosus. Int J Mol Sci. 2023;24(3):2259. doi:10.3390/ijms24032259
  • Draborg AH, Rasmussen NS, Larsen JL, et al. Immune responses to an early lytic cytomegalovirus antigen in systemic lupus erythematosus patients: t-cell responses, cytokine secretions and antibody status. PLoS One. 2018;13(3):e0193244. doi:10.1371/journal.pone.0193244
  • Segal Y, Calabro M, Kanduc D, et al. Human papilloma virus and lupus: the virus, the vaccine and the disease. Curr Opin Rheumatol. 2017;29(4):331–342. doi:10.1097/BOR.0000000000000398
  • Myers KS, Place M, Noguera DR, et al. COnTORT: COmprehensive Transcriptomic ORganizational Tool for simultaneously retrieving and organizing numerous gene expression data sets from the NCBI gene expression omnibus database. Microbiol Resour Announc. 2020;9(25). doi:10.1128/MRA.00587-20
  • Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18220. doi:10.1186/s13059-017-1349-1
  • Shen Z, Wei L, Yu Z-B, et al. The roles of TRIMs in antiviral innate immune signaling. Front Cell Infect Microbiol. 2021;11:628275.
  • Lukic Z, Campbell EM. The cell biology of TRIM5 alpha. Curr HIV/AIDS Rep. 2012;9(1):73–80. doi:10.1007/s11904-011-0102-8
  • Gruetter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol. 2012;2(2):142–150. doi:10.1016/j.coviro.2012.02.003
  • Pertel T, Hausmann S, Morger D, et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature. 2011;472(7343):361–365. doi:10.1038/nature09976
  • Chiramel AI, Meyerson NR, McNally KL, et al. TRIM5 alpha()restricts flavivirus replication by targeting the viral protease for proteasomal degradation. Cell Rep. 2019;27(11):3269. doi:10.1016/j.celrep.2019.05.040
  • Carthagena L, Parise MC, Ringeard M, Chelbi-Alix MK, Hazan U, Nisole S. Implication of TRIMalpha and TRIMCyp in interferon-induced anti-retroviral restriction activities. Retrovirology. 2008;5:59.
  • Curran CS, Gupta S, Sanz I, et al. PD-1 immunobiology in systemic lupus erythematosus. J Autoimmun. 2019;97:1–9. doi:10.1016/j.jaut.2018.10.025
  • Shen L, Lan L, Zhu T, et al. Identification and validation of IFI44 as key biomarker in lupus nephritis. Front Med. 2021;8:762848.
  • Garaud J-C, Schickel J-N, Blaison G, et al. B cell signature during inactive systemic lupus is heterogeneous: toward a biological dissection of lupus. PLoS One. 2011;6(8):e23900. doi:10.1371/journal.pone.0023900
  • Sezin T, Vorobyev A, Sadik CD, et al. Gene expression analysis reveals novel shared gene signatures and and candidate molecular mechanisms between pemphigus and systemic lupus erythematosus in CD4(+) T cells. Front Immunol. 2018;8:1992.
  • Joseph S, George NI, Green-Knox B, et al. Epigenome-wide association study of peripheral blood mononuclear cells in systemic lupus erythematosus: identifying DNA methylation signatures associated with interferon-related genes based on ethnicity and SLEDAI. J Autoimmun. 2019;96:147–157. doi:10.1016/j.jaut.2018.09.007
  • Esposito S, Bosis S, Semino M, et al. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis. 2014;33(9):1467–1475. doi:10.1007/s10096-014-2098-7
  • Sebastiani GD, Galeazzi M. Infection-genetics relationship in systemic lupus erythematosus. Lupus. 2009;18(13):1169–1175. doi:10.1177/0961203309345737
  • Edwards CJ, Syddall H, Goswami R, et al. Infections in infancy and the presence of antinuclear antibodies in adult life. Lupus. 2006;15(4):213–217. doi:10.1191/0961203306lu2286oa
  • Smith S, Gabhann JN, McCarthy E, et al. Estrogen receptor alpha regulates tripartite motif-containing protein 21 expression, contributing to dysregulated cytokine production in systemic lupus erythematosus. Arthritis Rheumatol. 2014;66(1):163–172. doi:10.1002/art.38187
  • Gao Y, Pan T, Xu G, et al. Pan-cancer illumination of TRIM gene family reveals immunology regulation and potential therapeutic implications. Hum Genomics. 2022;16(1):65. doi:10.1186/s40246-022-00441-9
  • Sebastian S, Sokolskaja E, Luban J. Arsenic counteracts human immunodeficiency virus type 1 restriction by various TRIM5 orthologues in a cell type-dependent manner. J Virol. 2006;80(4):2051–2054. doi:10.1128/JVI.80.4.2051-2054.2006
  • Ugarte-Gil MF, Sanchez-Zuniga C, Gamboa-Cardenas RV, et al. Circulating naive and memory CD4(+) T cells and metabolic syndrome in patients with systemic lupus erythematosus: data from a primarily Mestizo population. Rheumatology. 2015;54(7):1302–1307. doi:10.1093/rheumatology/keu434
  • Cutolo M. Macrophages as effectors of the immunoendocrinologic interactions in autoimmune rheumatic diseases. Ann N Y Acad Sci. 1999;876(1):32–41; discussion 41–2. doi:10.1111/j.1749-6632.1999.tb07620.x
  • Li F, Yang Y, Zhu X, et al. Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem. 2015;37(4):1279–1288. doi:10.1159/000430251
  • Labonte AC, Kegerreis B, Geraci NS, et al. Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus. PLoS One. 2018;13(12):e0208132. doi:10.1371/journal.pone.0208132
  • Egawa M, Mukai K, Yoshikawa S, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity. 2013;38(3):570–580. doi:10.1016/j.immuni.2012.11.014
  • Dossybayeva K, Abdukhakimova D, Poddighe D. Basophils and systemic lupus erythematosus in murine models and human patients. Biology-Basel. 2020;9(10):308. doi:10.3390/biology9100308
  • Rajsbaum R, Stoye JP, O’Garra A. Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells. Eur J Immunol. 2008;38(3):619–630. doi:10.1002/eji.200737916
  • Iwamoto Y, Seki Y, Taya K, et al. Generation of macrophages with altered viral sensitivity from genome-edited rhesus macaque iPSCs to model human disease. Mol Ther Methods Clin Dev. 2021;21:262–273. doi:10.1016/j.omtm.2021.03.008