331
Views
5
CrossRef citations to date
0
Altmetric
Endocrinology

Correlation Between Glycemic Variability and Diabetic Complications: A Narrative Review

, , , ORCID Icon &
Pages 3083-3094 | Received 25 Apr 2023, Accepted 11 Jul 2023, Published online: 21 Jul 2023

References

  • Papatheodorou K, Papanas N, Banach M, et al. Complications of Diabetes 2016. J Diabetes Res. 2016;2016:6989453. doi:10.1155/2016/6989453
  • Chinese Cardiovascular Disease Prevention Guidelines (2017) Writing group, Editorial Board of Chinese Journal of Cardiovascular Diseases. Chinese Guidelines for Prevention of cardiovascular diseases (2017). Chin J Cardiovasc Dis. 2018;46(1):10–25.
  • Cavender MA, Steg PG, Smith SC, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death. Circulation. 2015;132(10):923–931. doi:10.1161/CIRCULATIONAHA.114.014796
  • Caramori ML, Mauer M. Diabetes and nephropathy. Curr Opin Nephrol Hypertens. 2003;12(3):273–282. doi:10.1097/00041552-200305000-00008
  • Kocak MZ, Aktas G, Atak BM, et al. Is Neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Invest. 2020;50(3):e13206. doi:10.1111/eci.13206
  • Bilgin S, Kurtkulagi O, Tel BMA, et al. Does C-reactive protein to serum Albumin Ratio correlate with diabetic nephropathy in patients with type 2 Diabetes MELLITUS? The Care Time study. Prim Care Diabetes. 2021;15(6):1071–1074. doi:10.1016/j.pcd.2021.08.015
  • Kocak MZ, Aktas G, Duman TT, et al. Monocyte lymphocyte ratio as a predictor of diabetic kidney injury in type 2 diabetes mellitus; the MADKID study. J Diabetes and Metab Disord. 2020;19(2):997–1002. doi:10.1007/s40200-020-00595-0
  • Yue S, Zhang J, Wu J, et al. Use of the monocyte-to-lymphocyte ratio to predict diabetic retinopathy. Int J Environ Res Public Health. 2015;12(8):10009–10019. doi:10.3390/ijerph120810009
  • Škrah J, Šoupal J, Škrah J, et al. Glucose variability, HbA1c and microvascular complications. Rev Endocr Metab Disord. 2016;17(1):103–110. doi:10.1007/s11154-016-9347-2
  • Yapanis M, James S, Craig ME, et al. Complications of diabetes and metrics of glycemic management derived from continuous glucose monitoring. J Clin Endocrinol Metab. 2022;107(6):e2221–e2236. doi:10.1210/clinem/dgac034
  • Ceriello A, Novials A, Ortega E, et al. Vitamin C further improves the protective effect of GLP-1 on the ischemia-reperfusion-like effect induced by hyperglycemia post-hypoglycemia in type 1 diabetes. Cardiovasc Diabetol. 2013;12(1):97. doi:10.1186/1475-2840-12-97
  • Wang ZF, Zhu MX, Wang ZP. Research progress on the relationship between blood glucose fluctuation and vascular complications in type 2 diabetes mellitus. Adv Cardiol. 2018;39(6):1064–1068.
  • Ni JY, Ma XJ, Zhou J. Research progress of abnormal blood glucose fluctuation and diabetes complications. China Diabetes. 2022;14(4):388–392.
  • Liu ZG, Yao B, Lin BS, et al. Study on the correlation between blood glucose fluctuation index and average blood glucose fluctuation amplitude in self-blood glucose monitoring. Chin J Diabetes. 2021;13(5):476–481.
  • Molnar GD, Taylor WF, Ho MM. Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia. 1972;8(5):342–348. doi:10.1007/BF01218495
  • Bailey T, Bode BW, Christiansen MP, et al. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther. 2015;17(11):787–794. doi:10.1089/dia.2014.0378
  • Hoss U, Budiman ES. Factory-calibrated continuous glucose sensors: the science behind the technology. Diabetes Technol Ther. 2017;19(S2):S44–S50. doi:10.1089/dia.2017.0025
  • Sun B, Luo Z, Zhou J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. Cardiovasc Diabetol. 2021;20(1):9. doi:10.1186/s12933-020-01200-7
  • Foreman YD, Brouwers MCGJ, Berendschot TTJM, et al. The oral glucose tolerance test-derived incremental glucose peak is associated with greater arterial stiffness and maladaptive arterial remodeling: the Maastricht Study. Cardiovasc Diabetol. 2019;18(1):152. doi:10.1186/s12933-019-0950-x
  • Hirakawa Y, Arima H, Zoungas S, et al. Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care. 2014;37(8):2359–2365. doi:10.2337/dc14-0199
  • Kim JA, Lee JS, Chung HS. Impact of visit-to-visit fasting plasma glucose variability on the development of type 2 diabetes: a nationwide population-based cohort study. Diabetes Care. 2018;41(12):2610–2616. doi:10.2337/dc18-0802
  • J-Y N, X-J M, Zhou J. Research progress of abnormal blood glucose fluctuation and diabetic complications. Chin J Diabetes. 2022;14(4):388–392.
  • Papachristoforou E, Lambadiari V, Maratou E, et al. Association of glycemic indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020;2020:7489795. doi:10.1155/2020/7489795
  • Sheng MY. Study on the Correlation Between Blood Glucose Fluctuation and the Degree of Vascular Lesions in Type 2 Diabetes Patients with Normal HbAlc. Soochow University; 2020.
  • Klimontov VV, Saik OV, Korbut AI. Glucose variability: how does it work? Int J Mol Sci. 2021;22(15):7783. doi:10.3390/ijms22157783
  • Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–1083. doi:10.1016/S0140-6736(13)62154-6
  • Su HW, Kang S, Long YW, et al. Relationship between diabetic nephropathy and blood glucose fluctuation and inflammatory factors. Chi J Geriatric Heart Brain Vessel Dis. 2015;17(3):273–276.
  • Quan W, Jo E-K, Lee M-S. Role of pancreatic β-cell death and inflammation in diabetes. Diabetes Obes Metab. 2013;15(s3):141–151. doi:10.1111/dom.12153
  • Palazzo P, Maggio P, Altavilla R, et al. Cerebral hemodynamics and systemic endothelial function are already impaired in well-controlled type 2 diabetic patients, with short-term disease. PLoS One. 2013;8(12):e83287. doi:10.1371/journal.pone.0083287
  • Ceriello A, Quagliaro L, Piconi L, et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes. 2004;53(3):701–710. doi:10.2337/diabetes.53.3.701
  • Wang JS, Huang Y, Chen KJ, et al. Relationship between blood glucose fluctuation and vascular endothelial injury, platelet activation and PKCβ1 expression in patients with type 2 diabetes mellitus. Chin J Integr Med. 2016;36(10):1184–1190.
  • Gerbaud E, Darier R, Montaudon M, et al. Glycemic variability is a powerful independent predictive factor of midterm major adverse cardiac events in patients with diabetes with acute coronary syndrome. Diabetes Care. 2019;42(4):674–681. doi:10.2337/dc18-2047
  • Takahashi H, Iwahashi N, Kirigaya J, et al. Glycemic variability determined with a continuous glucose monitoring system can predict prognosis after acute coronary syndrome. Cardiovasc Diabetol. 2018;17(1):116. doi:10.1186/s12933-018-0761-5
  • Benalia M, Zeller M, Mouhat B, et al. Glycaemic variability is associated with severity of coronary artery disease in patients with poorly controlled type 2 diabetes and acute myocardial infarction. Diabetes Metab. 2019;45(5):446–452. doi:10.1016/j.diabet.2019.01.012
  • Ito T, Ichihashi T, Fujita H, et al. The impact of intraday glucose variability on coronary artery spasm in patients with dysglycemia. Heart Vessels. 2019;34(8):1250–1257. doi:10.1007/s00380-019-01353-w
  • Liang S, Yin H, Wei C, et al. Glucose variability for cardiovascular risk factors in type 2 diabetes: a meta-analysis. J Diabetes Metab Disord. 2017;16(1):45. doi:10.1186/s40200-017-0323-5
  • Lu J, Wang C, Shen Y, et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: a prospective cohort study. Diabetes Care. 2021;44(2):549–555. doi:10.2337/dc20-1862
  • Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42(3):400–405. doi:10.2337/dc18-1444
  • Picconi F, Parravano M, Ylli D, et al. Retinal neurodegeneration in patients with type 1 diabetes mellitus: the role of glycemic variability. Acta Diabetol. 2017;54(5):489–497. doi:10.1007/s00592-017-0971-4
  • Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care. 2018;41(11):2370–2376. doi:10.2337/dc18-1131
  • Guo Q, Zang P, Xu S, et al. Time in range, as a novel metric of glycemic control, is reversely associated with presence of diabetic cardiovascular autonomic neuropathy independent of HbA1c in Chinese type 2 diabetes. J Diabetes Res. 2020;2020:5817074. doi:10.1155/2020/5817074
  • Yoo JH, Chol MS, Ahn J, et al. Association between continuous glucose monitoring-derived time in range, other core metrics, and albuminuria in type 2 diabetes. Diabetes Technol Ther. 2020;22(10):768–776. doi:10.1089/dia.2019.0499
  • Zhou JJ, Schwenke DC, Bahn G, et al. Glycemic variation and cardiovascular risk in the veterans affairs diabetes trial. Diabetes Care. 2018;41(10):2187–2194. doi:10.2337/dc18-0548
  • Slieker RC, van der Heijden AAWH, Nijpels G, et al. Visit-to-visit variability of glycemia and vascular complications: the Hoorn Diabetes Care System cohort. Cardiovasc Diabetol. 2019;18(1):170. doi:10.1186/s12933-019-0975-1
  • Lee DY, Han K, Park S, et al. Glucose variability and the risks of stroke, myocardial infarction, and all-cause mortality in individuals with diabetes: retrospective cohort study. Cardiovasc Diabetol. 2020;19(1):144. doi:10.1186/s12933-020-01134-0
  • Lin CC, Yang CP, Li CI, et al. Visit-to-visit variability of fasting plasma glucose as predictor of ischemic stroke: competing risk analysis in a national cohort of Taiwan Diabetes Study. BMC Med. 2014;12(1):165. doi:10.1186/s12916-014-0165-7
  • Bonke FC, Donnachie E, Schneider A, et al. Association of the average rate of change in HbA1c with severe adverse events: a longitudinal evaluation of audit data from the Bavarian Disease Management Program for patients with type 2 diabetes mellitus. Diabetologia. 2016;59(2):286–293. doi:10.1007/s00125-015-3797-z
  • Wang A, Liu X, Xu J, et al. Visit‐to‐visit variability of fasting plasma glucose and the risk of cardiovascular disease and all‐cause mortality in the general population. J Am Heart Assoc. 2017;6(12):e006757. doi:10.1161/JAHA.117.006757
  • Li S, Tang X, Luo Y, et al. Impact of long-term glucose variability on coronary atherosclerosis progression in patients with type 2 diabetes: a 2.3 year follow-up study. Cardiovasc Diabetol. 2020;19(1):146. doi:10.1186/s12933-020-01126-0
  • Lai Y-R, Huang -C-C, Chiu W-C, et al. HbA1C variability is strongly associated with the severity of cardiovascular autonomic neuropathy in patients with type 2 diabetes after longer diabetes duration. Front Neurosci. 2019;13:458. doi:10.3389/fnins.2019.00458
  • Gu J, Fan YQ, Zhang JF, Wang C-Q. Association of hemoglobin A1c variability and the incidence of heart failure with preserved ejection fraction in patients with type 2 diabetes mellitus and arterial hypertension. Hellenic J Cardiol. 2018;59(2):91–97. doi:10.1016/j.hjc.2017.08.001
  • Yang CD, Shen Y, Ding FH, et al. Visit-to-visit fasting plasma glucose variability is associated with left ventricular adverse remodeling in diabetic patients with STEMI. Cardiovasc Diabetol. 2020;19(1):131. doi:10.1186/s12933-020-01112-6
  • Tang X, Zhong J, Zhang H, et al. Visit-to-visit fasting plasma glucose variability is an important risk factor for long-term changes in left cardiac structure and function in patients with type 2 diabetes. Cardiovasc Diabetol. 2019;18(1):50. doi:10.1186/s12933-019-0854-9
  • Li S, Nemeth I, Donnelly L, et al. Visit-to-visit HbA1c variability is associated with cardiovascular disease and microvascular complications in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2019;43(2):426–432. doi:10.2337/dc19-0823
  • Cardoso CRL, Leite NC, Moram CBM, et al. Long-term visit-to-visit glycemic variability as predictor of micro- and macrovascular complications in patients with type 2 diabetes: the Rio de Janeiro type 2 diabetes cohort study. Cardiovasc Diabetol. 2018;17(1):33. doi:10.1186/s12933-018-0677-0
  • Yang CP, Lin CC, Li CI, et al. Fasting plasma glucose variability and HbA1c are associated with peripheral artery disease risk in type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):4. doi:10.1186/s12933-019-0978-y
  • Pai YW, Lin CH, Lee IT, et al. Variability of fasting plasma glucose and the risk of painful diabetic peripheral neuropathy in patients with type 2 diabetes. Diabetes Metab. 2018;44(2):129–134. doi:10.1016/j.diabet.2018.01.015
  • Yang CP, Li CI, Liu CS, et al. Variability of fasting plasma glucose increased risks of diabetic polyneuropathy in T2DM. Neurology. 2017;88(10):944–951. doi:10.1212/WNL.0000000000003682
  • Song KH, Jeong JS, Kim MK, et al. Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus. J Diabetes Investig. 2019;10(3):745–752. doi:10.1111/jdi.12953
  • Lee MY, Huang JC, Chen SC, et al. Association of HbA1C variability and renal progression in patients with type 2 diabetes with chronic kidney disease stages 3–4. Int J Mol Sci. 2018;19(12):4116. doi:10.3390/ijms19124116
  • De Cosmo S, Viazzi F, Piscitelli P, et al. Blood pressure status and the incidence of diabetic kidney disease in patients with hypertension and type 2 diabetes. J Hypertens. 2016;34(10):2090–2098. doi:10.1097/HJH.0000000000001045
  • Zhou JJ, Coleman R, Holman RR, et al. Long-term glucose variability and risk of nephropathy complication in UKPDS, ACCORD and VADT trials. Diabetologia. 2020;63(11):2482–2485. doi:10.1007/s00125-020-05273-7
  • da Rosa LCGF, Zajdenverg L, Souto DL, et al. HbA1c variability and long-term glycemic control are linked to diabetic retinopathy and glomerular filtration rate in patients with type 1 diabetes and multiethnic background. J Diabetes Complications. 2019;33(9):610–615. doi:10.1016/j.jdiacomp.2019.05.022
  • Su J, Zhao L, Zhang X, et al. HbA1c variability and diabetic peripheral neuropathy in type 2 diabetic patients. Cardiovasc Diabetol. 2018;17(1):47. doi:10.1186/s12933-018-0693-0
  • Lai Y-R, Chiu W-C, Huang -C-C. HbA1C variability is strongly associated with the severity of peripheral neuropathy in patients with type 2 diabetes. Front Neurosci. 2019;13:90. doi:10.3389/fnins.2019.00090
  • Lee CL, Chen CH, Wu MJ, et al. The variability of glycated hemoglobin is associated with renal function decline in patients with type 2 diabetes. Ther Adv Chronic Dis. 2020;11:2040622319898370. doi:10.1177/2040622319898370
  • Yang CY, Su PF, Hung JY, et al. Comparative predictive ability of visit-to-visit HbA1c variability measures for microvascular disease risk in type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):105. doi:10.1186/s12933-020-01082-9
  • Borg R, Kuenen JC, Carstensen B, et al. Associations between features of glucose exposure and A1C: the A1C-Derived Average Glucose (ADAG) study. Diabetes. 2010;59(7):1585–1590. doi:10.2337/db09-1774
  • Ehehalt S, Wiegand S, Korner A, et al. Low association between fasting and OGTT stimulated glucose levels with HbA1c in overweight children and adolescents. Pediatr Diabetes. 2017;18(8):734–741. doi:10.1111/pedi.12461
  • Ohigashi M, Osugi K, Kusunoki Y, et al. Association of time in range with hemoglobin A1c, glycated albumin and 1,5‐anhydro‐d‐glucitol. J Diabetes Investig. 2021;12(6):940–949. doi:10.1111/jdi.13437
  • Hirsch IB, Welsh JB, Calhoun P, et al. Associations between HbA 1c and continuous glucose monitoring-derived glycaemic variables. Diabet Med. 2019;36(12):1637–1642. doi:10.1111/dme.14065
  • Lu J, Ma X, Zhang L, et al. Glycemic variability modifies the relationship between time in range and hemoglobin A1c estimated from continuous glucose monitoring: a preliminary study. Diabetes Res Clin Pract. 2020;161:108032. doi:10.1016/j.diabres.2020.108032
  • Fang FS, Liu XY, Yan ST, et al. Relationship between time in range and long-term glucose variability in elderly male patients with type 2 diabetes. Chin Gen Pract. 2023;26(16):1979–1983.
  • Tokutsu A, Okada Y, Torimoto K, et al. Relationship between glycemic intraday variations evaluated in continuous glucose monitoring and HbA1c variability in type 2 diabetes: pilot study. Diabetol Metab Syndr. 2021;13(1):45. doi:10.1186/s13098-021-00663-2
  • Tsuchiya T, Saisho Y, Murakami R, et al. Relationship between daily and visit-to-visit glycemic variability in patients with type 2 diabetes. Endocr J. 2020;67(8):877–881. doi:10.1507/endocrj.EJ20-0012
  • Peng HM, Deng HR, Zhou YW, et al. Effect of glucose variability on the relationship between time in range and blood glucose management in patients with type 1 diabetes mellitus. Chin Med J. 2022;102(16):1190–1195.
  • Liu ZG, Yao B, Lin BS, et al. Study on the correlation between blood glucose excursion index and mean amplitude of glucose excursion in self-monitoring of blood glucose. Chin J Diabetes. 2021;13(5):476–481.