263
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

Re-Emerging COVID-19: Controversy of Its Zoonotic Origin, Risks of Severity of Reinfection and Management

, & ORCID Icon
Pages 4307-4319 | Received 21 May 2023, Accepted 19 Aug 2023, Published online: 20 Sep 2023

References

  • Machhi J, Herskovitz J, Senan AM, et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol. 2020;15(3):359–386. doi:10.1007/s11481-020-09944-5
  • Medić S, Anastassopoulou C, Lozanov-Crvenković Z, et al. Risk and severity of SARS-CoV-2 reinfections during 2020–2022 in Vojvodina, Serbia: a population-level observational study. Lancet Reg Health Eur. 2022;20:100453. doi:10.1016/j.lanepe.2022.100453
  • Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005;24(11):S223–S227.
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi:10.1016/S0140-6736(20)30251-8
  • Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382(13):1199–1207. doi:10.1056/NEJMoa2001316
  • Chen Y, Liu Q, Guo D, et al. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–423.
  • Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19). Treasure Island (FL): StatPearls Publishing LLC; 2023.
  • Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069.
  • World Health Organization (WHO). WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19-11 March 2020. Geneva: World Health Organization; 2020.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. doi:10.1007/978-1-4939-2438-7_1
  • Goldsmith CS, Tatti KM, Ksiazek TG, et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis. 2004;10:320–326. doi:10.3201/eid1002.030913
  • Sexton NR, Smith EC, Blanc H, et al. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J Virol. 2016;90(16):7415–7428.
  • Masters PS, Kuo L, Ye R, et al. Genetic and molecular biological analysis of protein‒protein interactions in coronavirus assembly. Adv Exp Med Biol. 2006;(581):163–173. doi:10.1007/978-0-387-33012-9_29
  • Sandonís V, García-Ríos E, McConnell MJ, et al. Role of neutralizing antibodies in CMV infection: implications for new therapeutic approaches. Trends Microbiol. 2020;28(11):900–912. doi:10.1016/j.tim.2020.04.003
  • Ma J, Qi X, Chen H, et al. Coronavirus disease 2019 patients in earlier stages exhaled millions of severe acute respiratory syndrome coronavirus 2 per hour. Clin Infect Dis. 2021;72(10):e652–e654. doi:10.1093/cid/ciaa1283
  • de Groot RJ, Cowley JA, Enjuanes L, et al. Order Nidovirales. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier Inc; 2011:785–795.
  • Beeraka NM, Sukocheva OA, Lukina E, et al. Development of antibody resistance in emerging mutant strains of SARS CoV‐2: impediment for COVID‐19 vaccines. Rev Med Virol. 2022;32(5):e2346. doi:10.1002/rmv.2346
  • Amoutzias GD, Nikolaidis M, Tryfonopoulou E, et al. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses. 2022;14(1):78. doi:10.3390/v14010078
  • Cueno ME, Imai K. Structural comparison of the SARS CoV 2 spike protein relative to other human-infecting coronaviruses. Front Med. 2021;7:594439. doi:10.3389/fmed.2020.594439
  • Kumar N, Kaushik R, Tennakoon C, et al. Evolutionary signatures governing the codon usage bias in coronaviruses and their implications for viruses infecting various bat species. Viruses. 2021;13(9):1847. doi:10.3390/v13091847
  • Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. EmergMicrobesInfect. 2020;9(1):221–236. doi:10.1080/22221751.2020.1719902
  • Benvenuto D, Giovanetti M, Ciccozzi A, et al. The 2019‐new coronavirus epidemic: evidence for virus evolution. J Med Virol. 2020;92(4):455–459. doi:10.1002/jmv.25688
  • Wang Y, Kirkpatrick J, Zur Lage S, et al. 1H, 13C, and 15N backbone chemical-shift assignments of SARS-CoV-2 non-structural protein 1 (leader protein). Biomol NMR Assign. 2021;15(2):287–295.
  • Otter JA, Donskey C, Yezli S, et al. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect. 2016;92(3):235–250. doi:10.1016/j.jhin.2015.08.027
  • Do Vale B, Lopes AP, Fontes MDC, et al. Bats, pangolins, minks and other animals - villains or victims of SARS-CoV-2? Vet Res Commun. 2021;45(1):1–19. doi:10.1007/s11259-021-09787-2
  • Ghinai I, McPherson TD, Hunter JC, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet. 2020;395(10230):1137–1144. doi:10.1016/S0140-6736(20)30607-3
  • Ye F, Xu S, Rong Z, et al. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster. Int J Infect Dis. 2020;94:133–138. doi:10.1016/j.ijid.2020.03.042
  • Gao Z, Xu Y, Sun C, et al. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect. 2021;54(1):12–16. doi:10.1016/j.jmii.2020.05.001
  • Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860–868. doi:10.1126/science.abb5793
  • Baker RE, Yang W, Vecchi GA, et al. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science. 2020;369(6501):315–319. doi:10.1126/science.abc2535
  • Meyerowitz EA, Richterman A, Gandhi RT, et al. Transmission of SARS-CoV-2. Ann Intern Med. 2021;174(7):1037. doi:10.7326/L21-0166
  • Klompas M, Baker MA, Rhee C. Airborne transmission of SARS-CoV-2: theoretical considerations and available evidence. JAMA. 2020;324(5):441–442. doi:10.1001/jama.2020.12458
  • Rabaan AA, Al-Ahmed SH, Al-Malkey M, et al. Airborne transmission of SARS-CoV-2 is the dominant route of transmission: droplets and aerosols. Infez Med. 2021;29(1):10–19.
  • Ji S, Xiao S, Wang H, et al. Increasing contributions of airborne route in SARS-CoV-2 omicron variant transmission compared with the ancestral strain. Build Environ. 2022;221:109328. doi:10.1016/j.buildenv.2022.109328
  • Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592. doi:10.1056/NEJMc2011400
  • Falahi S, Kenarkoohi A. Transmission routes for SARS-CoV-2 infection: review of evidence. New Microbes New Infect. 2020;38:100778.
  • Kampf G, Todt D, Pfaender S, et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246–251. doi:10.1016/j.jhin.2020.01.022
  • Rahman MT, Sobur MA, Islam MS, et al. Zoonotic diseases: etiology, impact, and control. Microorganisms. 2020;8(9):1405. doi:10.3390/microorganisms8091405
  • Petrovan SO, Aldridge DC, Bartlett H, et al. Post COVID‐19: a solution scan of options for preventing future zoonotic epidemics. Bio Rev. 2021;96(6):2694–2715. doi:10.1111/brv.12774
  • Yesudhas D, Srivastava A, Gromiha MM. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infect. 2021;49(2):199–213. doi:10.1007/s15010-020-01516-2
  • Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–993. doi:10.1038/nature06536
  • Chan JF, To KK, Tse H, et al. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 2013;21(10):544–555. doi:10.1016/j.tim.2013.05.005
  • Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281–286. doi:10.1007/s12098-020-03263-6
  • Huang X, Zhang C, Pearce R, et al. Identifying the zoonotic origin of SARS-CoV-2 by modeling the binding affinity between the spike receptor-binding domain and host ACE2. J Proteome Res. 2020;19(12):4844–4856. doi:10.1021/acs.jproteome
  • Zhonghua L, Xing B, Xue Z, et al. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. China J Epidemiol. 2020;(41):145–151. doi:10.3760/cma.j.issn.0254-6450.2020.02.003
  • Hassan SA, Sheikh FN, Jamal S, et al. Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus. 2020;12(3):e7355. doi:10.7759/cureus.7355
  • Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. doi:10.1016/S0140-6736(20)30154-9
  • Sharun K, Dhama K, Pawde AM, et al. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. Vet Q. 2021;41(1):181–201. doi:10.1080/01652176.2021.1921311
  • Damas J, Hughes GM, Keough KC, et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. PNAS. 2020;117(36):22311–22322. doi:10.1073/pnas.2010146117
  • Lytras S, Hughes J, Martin D, et al. Exploring the natural origins of SARS-CoV-2 in the light of recombination. Genome Biol Evol. 2022;14(2):evac018. doi:10.1093/gbe/evac018
  • Hernandez RA, Colaner C. “This is not the hill to die on. Even if we literally could die on this hill”: examining communication ecologies of uncertainty and family communication about COVID-19. Am Behav Sci. 2021;65(7):956–975. doi:10.1177/0002764221992840
  • Chiner-Vives E, Cordovilla-Perez R, De la Rosa-Carrillo D, et al. Short and long-term impact of COVID-19 infection on previous respiratory diseases. Arch Bronconeumol. 2022;58(1):39–50. doi:10.1016/j.arbres.2022.03.011
  • Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. doi:10.1016/j.clim.2020.108393
  • Grosicki GJ, Bunsawat K, Jeong S, et al. Racial and ethnic disparities in cardiometabolic disease and COVID-19 outcomes in white, Black/African American, and latinx populations: social determinants of health. Prog Cardiovasc Dis. 2022;71:4–10. doi:10.1016/j.pcad.2022.04.004
  • Piscitelli P, Miani A, Setti L, et al. The role of outdoor and indoor air quality in the spread of SARS-CoV-2: overview and recommendations by the research group on COVID-19 and particulate matter (RESCOP commission). Environ Res. 2022;211:113038. doi:10.1016/j.envres.2022.113038
  • Cevik M, Marcus JL, Buckee C, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission dynamics should inform policy. Clin Infect Dis. 2021;73(2):S170–S176. doi:10.1093/cid/ciaa1442
  • Lima NN, de Souza RI, Feitosa PW, et al. People experiencing homelessness: their potential exposure to COVID-19. Psychiatry Res. 2020;288:112945. doi:10.1016/j.psychres.2020
  • Kusuma D, Pradeepa R, Khawaja KI, et al. Low uptake of COVID-19 prevention behaviors and high socioeconomic impact of lockdown measures in South Asia: evidence from a large-scale multi-country surveillance programme. SSM Popul Health. 2021;13:100751. doi:10.1016/j.ssmph.2021.100751
  • Han J, Zhang X, He S, et al. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environ Chem Lett. 2021;19(1):5–16. doi:10.1007/s10311-020-01101-x
  • Głuchowska K, Dzieciątkowski T, Sędzikowska A, et al. The new status of parasitic diseases in the COVID-19 pandemic-risk factors or protective agents? J Clin Med. 2021;10(11):2533. doi:10.3390/jcm10112533
  • Milne G, Hames T, Scotton C, et al. Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? Lancet Respir Med. 2021;9(12):1450–1466. doi:10.1016/S2213-2600(21)00407-0
  • To KK, Hung IF, Ip JD, et al. Coronavirus disease 2019 (COVID-19) re-infection by a phylogenetically distinct severe acute respiratory syndrome coronavirus 2 strain confirmed by whole genome sequencing. Clin Infect Dis. 2021;73(9):e2946–e2951. doi:10.1093/cid/ciaa1275
  • Field CJ, Heinly TA, Patel DR, et al. Immune durability and protection against SARS-CoV-2 re-infection in Syrian hamsters. Emerg Microbes Infect. 2022;11(1):1103–1114. doi:10.1080/22221751
  • Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27(1):28–33. doi:10.1038/s41591-020-01202-8
  • Zheng L, Chen K, Ma L. Knowledge, attitudes, and practices toward COVID-19 among construction industry practitioners in China. Front Public Health. 2021;8:599769. doi:10.3389/fpubh.2020.599769
  • Nicola M, O’Neill N, Sohrabi C, et al. Evidence based management guideline for the COVID-19 pandemic-Review article. Int J Surg. 2020;(77):206–216. doi:10.1016/j.ijsu.2020.04.001
  • World Health Organization. COVID-19 Weekly Epidemiological Update, 9 March 2021. World Health Organization; 2022.
  • Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: a timeline of immunological insights. Nat Rev Immunol. 2021;21(4):245–256. doi:10.1038/s41577-021-00522-1
  • Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immuni. 2020;52(4):583–589. doi:10.1016/j.immuni.2020.03.007
  • Kyriakidis NC, López-Cortés A, González EV, et al. SARS-CoV-2 vaccines strategies: a comprehensive review of Phase 3 candidates. NPJ Vaccines. 2021;6(1):28. doi:10.1038/s41541-021-00292-w
  • Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021;21(8):475–484. doi:10.1038/s41577-021-00578-z
  • Wu F, Zhao S, Yu B, et al. Complete genome characterization of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. BioRxiv. 2020. doi:10.1101/2020.01.24.919183
  • Scorza FB, Pardi N. New kids on the block: RNA-based influenza virus vaccines. Vaccines. 2018;6(2):20. doi:10.3390/vaccines6020020
  • Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021;595:572–577. doi:10.1038/s41586-021-03653-6
  • Tauzin A, Nayrac M, Benlarbi M, et al. A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses. Cell Host Microbe. 2021;29(7):1137–1150. doi:10.1016/j.chom.2021.06.001
  • Jafari A, DaneshPouya F, Niknam Z, et al. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep. 2022;49(6):4943–4957. doi:10.1007/s11033-022-07132-7
  • Holm MR, Poland GA. Critical aspects of packaging, storage, preparation, and administration of mRNA and adenovirus-vectored COVID-19 vaccines for optimal efficacy. Vaccine. 2021;39(3):457–459. doi:10.1016/j.vaccine.2020.12.017
  • Mahasirimongkol S, Khunphon A, Kwangsukstid O, et al. The pilot study of immunogenicity and adverse events of a COVID-19 vaccine regimen: priming with inactivated whole SARS-CoV-2 vaccine (CoronaVac) and boosting with the adenoviral vector (ChAdOx1 nCoV-19) vaccine. Vaccines. 2022;10(4):536. doi:10.3390/vaccines10040536
  • Bian L, Gao F, Zhang J, et al. Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Rev Vaccines. 2021;20(4):365–373. doi:10.1080/14760584.2021.1903879
  • Chmielewska AM, Czarnota A, Bieńkowska-Szewczyk K, et al. Immune response against SARS-CoV-2 variants: the role of neutralization assays. NPJ Vaccines. 2021;6(1):142. doi:10.1038/s41541-021-00404-6
  • Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. 2020;130(6):2757–2765. doi:10.1172/JCI138745
  • Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24(1):44–46. doi:10.1007/s10096-004-1271-9
  • Fisher DL, Alin P, Malnick S. The evidence for high-titer convalescent plasma in SARS-CoV-2. SN Compr Clin Med. 2021;3(3):790–792. doi:10.1007/s42399-021-00827-1
  • Casadevall A, Henderson JP, Joyner MJ, et al. SARS-CoV-2 variants and convalescent plasma: reality, fallacies, and opportunities. J Clin Invest. 2021;131(7):e148832. doi:10.1172/JCI148832
  • Zhong H, Wang Y, Zhang ZL, et al. Efficacy and safety of current therapeutic options for COVID-19-lessons to be learnt from SARS and MERS epidemic: a systematic review and meta-analysis. Pharmacol Res. 2020;157:104872. doi:10.1016/j.phrs.2020.104872
  • Ismaila MS, Bande F, Ishaka A, et al. Therapeutic options for COVID-19: a quick review. J Chemother. 2021;33(2):67–84. doi:10.1080/1120009X.2020.1868237
  • Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi:10.1056/NEJMoa2001191
  • Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473–475. doi:10.1016/S0140-6736(20)30317-2
  • Shang L, Zhao J, Hu Y, et al. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395(10225):683–684. doi:10.1016/S0140-6736(20)30361-5