103
Views
0
CrossRef citations to date
0
Altmetric
Cardiology

Advances in the Study of MG53 in Cardiovascular Disease

, , &
Pages 6073-6082 | Received 11 Aug 2023, Accepted 29 Nov 2023, Published online: 22 Dec 2023

References

  • Scicchitano P, Cameli M. Advances in Molecular Biomarkers in Cardiology. Biomolecules. 2022;12(10):1530. doi:10.3390/biom12101530
  • Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol. 2011;1(4):2029–2062. doi:10.1002/cphy.c100092
  • Cooper ST, McNeil PL. Membrane Repair: mechanisms and Pathophysiology. Physiol Rev. 2015;95(4):1205–1240. doi:10.1152/physrev.00037.2014
  • Jiang W, Liu M, Gu C, Ma H. The Pivotal Role of Mitsugumin 53 in Cardiovascular Diseases. Cardiovasc Toxicol. 2021;21(1):2–11. doi:10.1007/s12012-020-09609-y
  • Cai C, Weisleder N, Ko JK, et al. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem. 2009;284(23):15894–15902. doi:10.1074/jbc.M109.009589
  • Levy JR, Campbell KP, Glass DJ. MG53’s new identity. Skelet Muscle. 2013;3(1):25. doi:10.1186/2044-5040-3-25
  • Cai C, Lin P, Zhu H, et al. Zinc Binding to MG53 Protein Facilitates Repair of Injury to Cell Membranes. J Biol Chem. 2015;290(22):13830–13839. doi:10.1074/jbc.M114.620690
  • Tan T, Ko YG, Ma J. Dual function of MG53 in membrane repair and insulin signaling. BMB Rep. 2016;49(8):414–423. doi:10.5483/bmbrep.2016.49.8.079
  • Ozato K, Shin DM, Chang TH. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008;8(11):849–860. doi:10.1038/nri2413
  • Zhong W, Benissan-Messan DZ, Ma J, Cai C, Lee PHU. Cardiac effects and clinical applications of MG53. Cell Biosci. 2021;11(1):115. doi:10.1186/s13578-021-00629-x
  • Nagre N, Wang S, Kellett T, et al. TRIM72 modulates caveolar endocytosis in repair of lung cells. Am J Physiol Lung Cell Mol Physiol. 2016;310(5):L452–L464. doi:10.1152/ajplung.00089.2015
  • Gumpper-Fedus K, Park KH, Ma H, et al. MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress. Redox Biol. 2022;54:102357. doi:10.1016/j.redox.2022.102357
  • Hwang M, Ko JK, Weisleder N, Takeshima H, Ma J. Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. Am J Physiol Cell Physiol. 2011;301(1):C106–C114. doi:10.1152/ajpcell.00382.2010
  • Bansal D, Miyake K, Vogel SS, et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 2003;423(6936):168–172. doi:10.1038/nature01573
  • Yao W, Li H, Han X, et al. MG53 anchored by dysferlin to cell membrane reduces hepatocyte apoptosis which induced by ischaemia/reperfusion injury in vivo and in vitro. J Cell Mol Med. 2017;21(10):2503–2513. doi:10.1111/jcmm.13171
  • Zhou L, Middel V, Reischl M, Strähle U, Nienhaus GU. Distinct amino acid motifs carrying multiple positive charges regulate membrane targeting of dysferlin and MG53. PLoS One. 2018;13(8):e0202052. doi:10.1371/journal.pone.0202052
  • Chase TH, Cox GA, Burzenski L, Foreman O, Shultz LD. Dysferlin deficiency and the development of cardiomyopathy in a mouse model of limb-girdle muscular dystrophy 2B. Am J Pathol. 2009;175(6):2299–2308. doi:10.2353/ajpath.2009.080930
  • Chung YW, Lagranha C, Chen Y, et al. Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 2015;112(17):E2253–E2262. doi:10.1073/pnas.1416230112
  • Hao M, Zhu S, Hu L, Zhu H, Wu X, Li Q. Myocardial Ischemic Postconditioning Promotes Autophagy against Ischemia Reperfusion Injury via the Activation of the nNOS/AMPK/mTOR Pathway. Int J Mol Sci. 2017;18(3):614. doi:10.3390/ijms18030614
  • Du J, Li Y, Zhao W. Autophagy and Myocardial Ischemia. Adv Exp Med Biol. 2020;1207:217–222. doi:10.1007/978-981-15-4272-5_15
  • Cao CM, Zhang Y, Weisleder N, et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning. Circulation. 2010;121(23):2565–2574. doi:10.1161/CIRCULATIONAHA.110.954628
  • Evrengül H, Dursunoğlu D, Semiz E. Iskemik onkoşullanma [Ischemic preconditioning]. Anadolu Kardiyol Derg. 2003;3(2):144–149.
  • Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol. 2009;47(1):32–40. doi:10.1016/j.yjmcc.2009.03.019
  • Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res. 2009;84(2):201–208. doi:10.1093/cvr/cvp274
  • Shan D, Guo S, Wu HK, et al. Cardiac Ischemic Preconditioning Promotes MG53 Secretion Through H2O2-Activated Protein Kinase C-δ Signaling. Circulation. 2020;142(11):1077–1091. doi:10.1161/CIRCULATIONAHA.119.044998
  • Wang Q, Park KH, Geng B, et al. MG53 Inhibits Necroptosis Through Ubiquitination-Dependent RIPK1 Degradation for Cardiac Protection Following Ischemia/Reperfusion Injury. Front Cardiovasc Med. 2022;9:868632. doi:10.3389/fcvm.2022.868632
  • Frontera A, Limite LR, Pagani S, et al. Characterization of cardiac electrogram signals in atrial arrhythmias. Minerva Cardiol Angiol. 2021;69(1):70–80. doi:10.23736/S2724-5683.20.05431-6
  • Masumiya H, Asaumi Y, Nishi M, et al. Mitsugumin 53-mediated maintenance of K+ currents in cardiac myocytes. Channels (Austin). 2009;3(1):6–11. doi:10.4161/chan.3.1.7571
  • Liu W, Wang G, Zhang C, et al. MG53, A Novel Regulator of KchIP2 and Ito,f, Plays a Critical Role in Electrophysiological Remodeling in Cardiac Hypertrophy. Circulation. 2019;139(18):2142–2156. doi:10.1161/CIRCULATIONAHA.118.029413
  • Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E, Tousoulis D. Atrial Fibrillation: pathogenesis, Predisposing Factors, and Genetics. Int J Mol Sci. 2021;23(1):6. doi:10.3390/ijms23010006
  • Gramley F, Lorenzen J, Koellensperger E, Kettering K, Weiss C, Munzel T. Atrial fibrosis and atrial fibrillation: the role of the TGF-β1 signaling pathway. Int J Cardiol. 2010;143(3):405–413. doi:10.1016/j.ijcard.2009.03.110
  • Guo J, Jia F, Jiang Y, et al. Potential role of MG53 in the regulation of transforming-growth-factor-β1-induced atrial fibrosis and vulnerability to atrial fibrillation. Exp Cell Res. 2018;362(2):436–443. doi:10.1016/j.yexcr.2017.12.007
  • Brieler J, Breeden MA, Tucker J. Cardiomyopathy: an Overview. Am Fam Physician. 2017;96(10):640–646.
  • Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic Cardiomyopathy: an Overview of Genetics and Management. Biomolecules. 2019;9(12):878. doi:10.3390/biom9120878
  • Masterclass Contributors M, Firth J. Cardiology: hypertrophic cardiomyopathy. Clin Med Lond. 2019;19(1):61–63. doi:10.7861/clinmedicine.19-1-61
  • Ham YM, Mahoney SJ. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72. Exp Cell Res. 2013;319(10):1451–1462. doi:10.1016/j.yexcr.2013.02.016
  • Poma P. NF-κB and Disease. Int J Mol Sci. 2020;21(23):9181. doi:10.3390/ijms21239181
  • Bryant SM, Kong CHT, Watson JJ, et al. Caveolin-3 KO disrupts t-tubule structure and decreases t-tubular Ica density in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol. 2018;315(5):H1101–H1111. doi:10.1152/ajpheart.00209.2018
  • Zhang C, Chen B, Wang Y, et al. MG53 is dispensable for T-tubule maturation but critical for maintaining T-tubule integrity following cardiac stress. J Mol Cell Cardiol. 2017;112:123–130. doi:10.1016/j.yjmcc.2017.08.007
  • Xu L, Wang H, Jiang F, Sun H, Zhang D. LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway. Aging (Albany NY). 2020;12(4):3126–3139. doi:10.18632/aging.102668
  • Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–28. doi:10.1007/s00125-017-4390-4
  • Chong CR, Clarke K, Levelt E. Metabolic Remodeling in Diabetic Cardiomyopathy. Cardiovasc Res. 2017;113(4):422–430. doi:10.1093/cvr/cvx018
  • Gao P, Cao M, Jiang X, et al. Cannabinoid Receptor 2-Centric Molecular Feedback Loop Drives Necroptosis in Diabetic Heart Injuries. Circulation. 2023;147(2):158–174. doi:10.1161/CIRCULATIONAHA.122.059304
  • Avagimyan A, Popov S, Shalnova S. The Pathophysiological Basis of Diabetic Cardiomyopathy Development. Curr Probl Cardiol. 2022;47(9):101156. doi:10.1016/j.cpcardiol.2022.101156
  • Liu F, Song R, Feng Y, et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α. Circulation. 2015;131(9):795–804. doi:10.1161/CIRCULATIONAHA.114.012285
  • Bian Z, Wang Q, Zhou X, et al. Sustained elevation of MG53 in the bloodstream increases tissue regenerative capacity without compromising metabolic function. Nat Commun. 2019;10(1):4659. doi:10.1038/s41467-019-12483-0
  • Philouze C, Turban S, Cremers B, et al. MG53 is not a critical regulator of insulin signaling pathway in skeletal muscle. PLoS One. 2021;16(2):e0245179. doi:10.1371/journal.pone.0245179
  • Li L, Gao P, Tang X, et al. CB1R-stabilized NLRP3 inflammasome drives antipsychotics cardiotoxicity. Signal Transduct Target Ther. 2022;7(1):190. doi:10.1038/s41392-022-01018-7
  • Li XQ, Tang XR, Li LL. Antipsychotics cardiotoxicity: what’s known and what’s next. World J Psychiatry. 2021;11(10):736–753. doi:10.5498/wjp.v11.i10.736
  • Boorsma EM, Ter Maaten JM, Damman K, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nat Rev Cardiol. 2020;17(10):641–655. doi:10.1038/s41569-020-0379-7
  • Dibb KM, Louch WE, Trafford AW. Cardiac Transverse Tubules in Physiology and Heart Failure. Annu Rev Physiol. 2022;84:229–255. doi:10.1146/annurev-physiol-061121-040148
  • Ichikawa Y, Zemljic-Harpf AE, Zhang Z, et al. Modulation of caveolins, integrins and plasma membrane repair proteins in anthracycline-induced heart failure in rabbits. PLoS One. 2017;12(5):e0177660. doi:10.1371/journal.pone.0177660
  • He B, Tang RH, Weisleder N, et al. Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in δ-Sarcoglycan-deficient hamsters. Mol Ther. 2012;20(4):727–735. doi:10.1038/mt.2012.5
  • Wang X, Li X, Ong H, et al. MG53 suppresses NF-κB activation to mitigate age-related heart failure. JCI Insight. 2021;6(17):e148375. doi:10.1172/jci.insight.148375
  • Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal. 2021;77:109824. doi:10.1016/j.cellsig.2020.109824
  • Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018;68-69:490–506. doi:10.1016/j.matbio.2018.01.013
  • Zhao J, Lei H. Tripartite Motif Protein 72 Regulates the Proliferation and Migration of Rat Cardiac Fibroblasts via the Transforming Growth Factor-β Signaling Pathway. Cardiology. 2016;134(3):340–346. doi:10.1159/000443703
  • Chen X, Su J, Feng J, et al. TRIM72 contributes to cardiac fibrosis via regulating STAT3/Notch-1 signaling. J Cell Physiol. 2019;234(10):17749–17756. doi:10.1002/jcp.28400
  • Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–1488. doi:10.1093/cvr/cvaa324
  • Li H, Duann P, Lin PH, et al. Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair. J Biol Chem. 2015;290(40):24592–24603. doi:10.1074/jbc.M115.680074
  • Mulholland DL, Gotlieb AI. Cell biology of valvular interstitial cells. Can J Cardiol. 1996;12(3):231–236.
  • Adesanya TMA, Russell M, Park KH, et al. MG 53 Protein Protects Aortic Valve Interstitial Cells From Membrane Injury and Fibrocalcific Remodeling. J Am Heart Assoc. 2019;8(4):e009960. doi:10.1161/JAHA.118.009960
  • Rahmutula D, Zhang H, Wilson EE, Olgin JE. Absence of natriuretic peptide clearance receptor attenuates TGF-β1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc Res. 2019;115(2):357–372. doi:10.1093/cvr/cvy224
  • Wu SJ, He RL, Zhao L, et al. Cardiac-Specific Overexpression of Caveolin-1 in Rats With Ischemic Cardiomyopathy Improves Arrhythmogenicity and Cardiac Remodelling. Can J Cardiol. 2023;39(1):73–86. doi:10.1016/j.cjca.2022.10.005
  • Wang H, Wang X, Bie M, Lu K, Xiao H. MG53/CAV1 regulates transforming growth factor-β1 signaling-induced atrial fibrosis in atrial fibrillation. Cell Cycle. 2020;19(20):2734–2744. doi:10.1080/15384101.2020.1827183
  • Lemckert FA, Bournazos A, Eckert DM, et al. Lack of MG53 in human heart precludes utility as a biomarker of myocardial injury or endogenous cardioprotective factor. Cardiovasc Res. 2016;110(2):178–187. doi:10.1093/cvr/cvw017
  • Duann P, Li H, Lin P, et al. MG53-mediated cell membrane repair protects against acute kidney injury. Sci Transl Med. 2015;7(279):279ra36. doi:10.1126/scitranslmed.3010755
  • Weisleder N, Takizawa N, Lin P, et al. Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med. 2012;4(139):139ra85. doi:10.1126/scitranslmed.3003921
  • Liu J, Zhu H, Zheng Y, et al. Cardioprotection of recombinant human MG53 protein in a porcine model of ischemia and reperfusion injury. J Mol Cell Cardiol. 2015;80:10–19. doi:10.1016/j.yjmcc.2014.12.010