182
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Quantitative Analysis of Multimodal MRI Markers and Clinical Risk Factors for Cerebral Small Vessel Disease Based on Deep Learning

, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 739-750 | Received 03 Nov 2023, Accepted 12 Feb 2024, Published online: 04 Mar 2024

References

  • Cannistraro RJ, Badi M, Eidelman BH, et al. CNS small vessel disease: a clinical review. Neurology. 2019;92(24):1146–1156. doi:10.1212/WNL.0000000000007654
  • Ma C, Li H, Zhang K, et al. Risk Factors of Restroke in Patients with Lacunar Cerebral Infarction Using Magnetic Resonance Imaging Image Features under Deep Learning Algorithm. Contrast Media Mol Imaging. 2021;2021:2527595. doi:10.1155/2021/2527595
  • Duering M, Biessels GJ, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023.
  • Jiang J, Wang D, Song Y, et al. Computer-aided extraction of select MRI markers of cerebral small vessel disease: a systematic review. Neuroimage. 2022;261:119528. doi:10.1016/j.neuroimage.2022.119528
  • Williamson BJ, Khandwala V, Wang D, et al. Automated grading of enlarged perivascular spaces in clinical imaging data of an acute stroke cohort using an interpretable, 3D deep learning framework. Sci Rep. 2022;12(1):788. doi:10.1038/s41598-021-04287-4
  • Wu J, Xia Y, Wang X, et al. uRP: an integrated research platform for one-stop analysis of medical images. Front Radiol. 2023;3:1153784.
  • Zhu W, Huang H, Zhou Y, et al. Automatic segmentation of white matter hyperintensities in routine clinical brain MRI by 2D VB-Net: a large-scale study. Front Aging Neurosci. 2022;14:915009. doi:10.3389/fnagi.2022.915009
  • Rieu Z, Kim J, Kim RE, et al. Semi-Supervised Learning in Medical MRI Segmentation: brain Tissue with White Matter Hyperintensity Segmentation Using FLAIR MRI. Brain Sci. 2021;11(6). doi:10.3390/brainsci11060720
  • Chen X, Wang J, Shan Y, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication. J Neurol. 2019;266(10):2347–2362.
  • Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–838. doi:10.1016/S1474-4422(13)70124-8
  • Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–696.
  • Gao F-Q, Swartz RH, Scheltens P, et al. Complexity of MRI white matter hyperintensity assessments in relation to cognition in aging and dementia from the Sunnybrook Dementia Study. J Alzheimers Dis. 2011;26(Suppl 3):379–388. doi:10.3233/JAD-2011-0058
  • Gouw AA, Van Der Flier WM, Van Straaten EC, et al. Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study. J Neurol. 2006;253(9):1189–1196. doi:10.1007/s00415-006-0193-5
  • Staals J, Makin SDJ, Doubal FN, et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology. 2014;83(14):1228–1234. doi:10.1212/WNL.0000000000000837
  • Yang S, Yuan J, Qin W, et al. Twenty-four-hour ambulatory blood pressure variability is associated with total magnetic resonance imaging burden of cerebral small-vessel disease. Clin Interv Aging. 2018;13:1419–1427. doi:10.2147/CIA.S171261
  • Flora GD, Nayak MK. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr Pharm Des. 2019;25(38):4063–4084.
  • Garnier-Crussard A, Bougacha S, Wirth M, et al. White matter hyperintensities across the adult lifespan: relation to age, Aβ load, and cognition. Alzheimers Res Ther. 2020;12(1):127. doi:10.1186/s13195-020-00669-4
  • Kim MS, Kim WJ, Khera AV, et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur Heart J. 2021;42(34):3388–3403. doi:10.1093/eurheartj/ehab454
  • Park J-H, Hong K-S, Lee E-J, et al. High levels of apolipoprotein B/AI ratio are associated with intracranial atherosclerotic stenosis. Stroke. 2011;42(11):3040–3046. doi:10.1161/STROKEAHA.111.620104
  • Holme I, Aastveit AH, Hammar N, et al. Relationships between lipoprotein components and risk of ischaemic and haemorrhagic stroke in the Apolipoprotein MOrtality RISk study (AMORIS). J Intern Med. 2009;265(2):275–287. doi:10.1111/j.1365-2796.2008.02016.x
  • Lind L, Vessby B, Sundström J. The apolipoprotein B/AI ratio and the metabolic syndrome independently predict risk for myocardial infarction in middle-aged men. Arterioscler Thromb Vasc Biol. 2006;26(2):406–410. doi:10.1161/01.ATV.0000197827.12431.d0
  • Anniwaer J, Liu M-Z, Xue K-D, et al. Homocysteine might increase the risk of recurrence in patients presenting with primary cerebral infarction. Int J Neurosci. 2019;129(7):654–659. doi:10.1080/00207454.2018.1517762
  • Jimenez-Conde J, Biffi A, Rahman R, et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke. Stroke. 2010;41(3):437–442. doi:10.1161/STROKEAHA.109.563502
  • Benjamin P, Trippier S, Lawrence AJ, et al. Lacunar Infarcts, but Not Perivascular Spaces, Are Predictors of Cognitive Decline in Cerebral Small-Vessel Disease. Stroke. 2018;49(3):586–593. doi:10.1161/STROKEAHA.117.017526
  • Ding J, Sigurðsson S, Jónsson PV, et al. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia: the Age, Gene/Environment Susceptibility-Reykjavik Study. JAMA Neurol. 2017;74(9):1105–1112. doi:10.1001/jamaneurol.2017.1397
  • H-Y H, Y-N O, Shen X-N, et al. White matter hyperintensities and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 36 prospective studies. Neurosci Biobehav Rev. 2021;120:16–27. doi:10.1016/j.neubiorev.2020.11.007
  • Guo J, Wang J, Sun W, et al. The advances of post-stroke depression: 2021 update. J Neurol. 2022;269(3):1236–1249. doi:10.1007/s00415-021-10597-4
  • Zhang X, Tang Y, Xie Y, et al. Total magnetic resonance imaging burden of cerebral small-vessel disease is associated with post-stroke depression in patients with acute lacunar stroke. Eur J Neurol. 2017;24(2):374–380. doi:10.1111/ene.13213
  • Wang M, Li Y, Song Y, et al. Association of total cerebral small vessel disease burden with the cavitation of recent small subcortical infarcts. Acta Radiol. 2023;64(1):295–300. doi:10.1177/02841851211066583
  • Yin ZG, Wang QS, Yu K, et al. Sex differences in associations between blood lipids and cerebral small vessel disease. Nutr, Metab Cardiovasc Dis. 2018;28(1):28–34. doi:10.1016/j.numecd.2017.10.001
  • Feigin VL. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. doi:10.1016/S1474-4422(21)00252-0
  • Ghafoorian M, Karssemeijer N, Heskes T, et al. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. Neuroimage Clin. 2017;14:391–399. doi:10.1016/j.nicl.2017.01.033
  • Rasheed Z, Ma Y-K, Ullah I, et al. Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques. Brain Sci. 2023;13(9):1320.
  • Duan Y, Shan W, Liu L, et al. Primary Categorizing and Masking Cerebral Small Vessel Disease Based on “Deep Learning System”. Front Neuroinf. 2020;14:17. doi:10.3389/fninf.2020.00017