106
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Prognostic Risk Models Using Epithelial Cells Identify β-Sitosterol as a Potential Therapeutic Target Against Esophageal Squamous Cell Carcinoma

, , , , ORCID Icon & ORCID Icon
Pages 1193-1211 | Received 02 Nov 2023, Accepted 21 Mar 2024, Published online: 27 Mar 2024

References

  • Wang Y, Cheng J, Xie D, et al. NS1-binding protein radiosensitizes esophageal squamous cell carcinoma by transcriptionally suppressing c-Myc. Cancer Commun. 2018;38:33. doi:10.1186/s40880-018-0307-y
  • Huang C, Zhu Y, Li Q, et al. Feasibility and efficiency of concurrent chemoradiotherapy with a single agent or double agents vs radiotherapy alone for elderly patients with esophageal squamous cell carcinoma: experience of two centers. Cancer Med. 2019;8(1):28–39. doi:10.1002/cam4.1788
  • Oppedijk V, van der Gaast A, van Lanschot JJB, et al. Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. J Clin Oncol. 2014;32(5):385–391. doi:10.1200/JCO.2013.51.2186
  • He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B. 2021;11(11):3379–3392. doi:10.1016/j.apsb.2021.03.008
  • Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–680. doi:10.1038/s41568-021-00378-6
  • Chen Y, Zhu S, Liu T, et al. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell. 2023;41(5):903–918.e8 e908. doi:10.1016/j.ccell.2023.03.001
  • Ren Q, Zhang P, Zhang X, et al. A fibroblast-associated signature predicts prognosis and immunotherapy in esophageal squamous cell cancer. Front Immunol. 2023;14:1199040. doi:10.3389/fimmu.2023.1199040
  • Kuksin M, Morel D, Aglave M, et al. Applications of single-cell and bulk RNA sequencing in onco-immunology. Eur J Cancer. 2021;149:193–210. doi:10.1016/j.ejca.2021.03.005
  • Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu Rev Immunol. 2021;39(1):583–609. doi:10.1146/annurev-immunol-110519-071134
  • Chen Z, Zhao M, Liang J, et al. Dissecting the single-cell transcriptome network underlying esophagus non-malignant tissues and esophageal squamous cell carcinoma. EBiomedicine. 2021;69:103459. doi:10.1016/j.ebiom.2021.103459
  • Tabah A, Buetti N, Staiquly Q, et al. Eurobact-2 Study Group EEE and the ON epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study. Intensive Care Med. 2023;49:178–190. doi:10.1007/s00134-022-06944-2
  • Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics. 2009;10(1):143. doi:10.1186/1471-2164-10-143
  • Wen J, Yang H, Liu MZ, et al. Gene expression analysis of pretreatment biopsies predicts the pathological response of esophageal squamous cell carcinomas to neo-chemoradiotherapy. Ann Oncol. 2014;25:1769–1774. doi:10.1093/annonc/mdu201
  • Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110. doi:10.1007/978-1-4939-3578-9_5
  • Shi K, Li Y, Yang L, et al. Profiling transcriptional heterogeneity of epithelium, fibroblasts, and immune cells in esophageal squamous cell carcinoma by single-cell RNA sequencing. FASEB J. 2022;36:e22620. doi:10.1096/fj.202200898R
  • Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71. doi:10.1093/nar/gkv1507
  • Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–3587.e29. doi:10.1016/j.cell.2021.04.048
  • Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–D426. doi:10.1093/nar/gky1038
  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29–34. doi:10.1093/nar/27.1.29
  • Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088. doi:10.1038/s41467-021-21246-9
  • Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–1086. doi:10.1038/nmeth.4463
  • Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979–982. doi:10.1038/nmeth.4402
  • Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4(1):2612. doi:10.1038/ncomms3612
  • Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773–782. doi:10.1038/s41587-019-0114-2
  • Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–1756. doi:10.1101/gr.239244.118
  • Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–D961. doi:10.1093/nar/gks1111
  • Geeleher P, Cox N, Huang RS, Barbour JD. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One. 2014;9(9):e107468. doi:10.1371/journal.pone.0107468
  • Chen Z, Huang Y, Hu Z, et al. Dissecting the single-cell transcriptome network in patients with esophageal squamous cell carcinoma receiving operative paclitaxel plus platinum chemotherapy. Oncogenesis. 2021;10(10):71. doi:10.1038/s41389-021-00359-2
  • Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(5):584–590. doi:10.1097/CM9.0000000000002108
  • Gu J, Sun Y, Song J, et al. Irradiation induces DJ-1 secretion from esophageal squamous cell carcinoma cells to accelerate metastasis of bystander cells via a TGF-beta1 positive feedback loop. J Exp Clin Cancer Res. 2022;41(1):259. doi:10.1186/s13046-022-02471-6
  • Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022;15:129. doi:10.1186/s13045-022-01347-8
  • Ezz MA, Takahashi M, Rivera RM, Balboula AZ. Cathepsin L regulates oocyte meiosis and preimplantation embryo development. Cell Prolif. 2023;e13526. doi:10.1111/cpr.13526
  • Zhang L, Zhao Y, Yang J, et al. CTSL, a prognostic marker of breast cancer, that promotes proliferation, migration, and invasion in cells in triple-negative breast cancer. Front Oncol. 2023;13:1158087. doi:10.3389/fonc.2023.1158087
  • Gao F, Wang X, Qin N, et al. The analysis of cathepsin L that mediates cellular SARS-CoV-2 infection leading to COVID-19 in head and neck squamous cell carcinoma. Front Immunol. 2023;14:1156038. doi:10.3389/fimmu.2023.1156038
  • Liao J, Wang J, Xu Y, et al. LAPTM4B-YAP loop feedback amplification enhances the stemness of hepatocellular carcinoma. iScience. 2023;26:106754. doi:10.1016/j.isci.2023.106754
  • Wang H, Wang Q, Wu Y, Lou J, Zhu S, Xu Y. Autophagy-related gene LAPTM4B promotes the progression of renal clear cell carcinoma and is associated with immunity. Front Pharmacol. 2023;14:1118217. doi:10.3389/fphar.2023.1118217
  • Huang Y, Peng M, Qin H, et al. LAPTM4B promotes AML progression through regulating RPS9/STAT3 axis. Cell Signal. 2023;106:110623. doi:10.1016/j.cellsig.2023.110623
  • Mayca Pozo F, Geng X, Miyagi M, Amin AL, Huang AY, Zhang Y. MYO10 regulates genome stability and cancer inflammation through mediating mitosis. Cell Rep. 2023;42(5):112531. doi:10.1016/j.celrep.2023.112531
  • Ou H, Wang L, Xi Z, et al. MYO10 contributes to the malignant phenotypes of colorectal cancer via RACK1 by activating integrin/Src/ FAK signaling. Cancer Sci. 2022;113(11):3838–3851. doi:10.1111/cas.15519
  • Song G, Xu J, He L, et al. Systematic profiling identifies PDLIM2 as a novel prognostic predictor for oesophageal squamous cell carcinoma (ESCC). J Cell Mol Med. 2019;23(8):5751–5761. doi:10.1111/jcmm.14491
  • Lv W, Guo H, Wang J, Ma R, Niu L, Shang Y. PDLIM2 can inactivate the TGF-beta/Smad pathway to inhibit the malignant behavior of ovarian cancer cells. Cell Biochem Funct. 2023;41(5):542–552. doi:10.1002/cbf.3801
  • Cox OT, O’Sullivan N, Tresse E, Ward S, Buckley N, O’Connor R. PDLIM2 is highly expressed in breast cancer tumour-associated macrophages and is required for M2 macrophage polarization. Front Oncol. 2022;12:1028959. doi:10.3389/fonc.2022.1028959
  • Lavareze L, Scarini JF, de Lima-Souza RA, et al. Salivary gland cancer in the setting of tumor microenvironment: translational routes for therapy. Crit Rev Oncol Hematol. 2022;171:103605. doi:10.1016/j.critrevonc.2022.103605
  • Chen W, Li Y, Liu C, et al. In situ engineering of tumor-associated macrophages via a nanodrug-delivering-drug (beta-Elemene@Stanene) strategy for enhanced cancer chemo-immunotherapy. Angew Chem Int Ed Engl. 2023;62(41):e202308413. doi:10.1002/anie.202308413
  • Plitas G, Konopacki C, Wu K, et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity. 2016;45(5):1122–1134. doi:10.1016/j.immuni.2016.10.032
  • Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11. doi:10.1038/s12276-018-0191-1
  • Wang H, Wang Z, Zhang Z, Liu J, Hong L. Beta-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: mechanisms of action and future prospects. Adv Nutr. 2023;14:1085–1110. doi:10.1016/j.advnut.2023.05.013
  • Wang S, Zhao W, Sun L, et al. Independent and opposing associations of dietary phytosterols intake and PLCE1 rs2274223 polymorphisms on esophageal squamous cell carcinoma risk. Eur J Nutr. 2021;60:4357–4366. doi:10.1007/s00394-021-02561-9