72
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Integrated Analysis of CD1A Immune Infiltration and Competing Endogenous RNA Networks in COAD

, , , , ORCID Icon &
Pages 2037-2053 | Received 18 Dec 2023, Accepted 26 Apr 2024, Published online: 11 May 2024

References

  • Araghi M, Soerjomataram I, Jenkins M, et al. Global trends in colorectal cancer mortality: projections to the year 2035. Interna J Can. 2019;144(12):2992–3000. doi:10.1002/ijc.32055
  • Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers. 2021;13(9):2025. doi:10.3390/cancers13092025
  • Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA. 2023;73(3):233–254. doi:10.3322/caac.21772
  • Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Molecular mechanisms of colon cancer progression and metastasis: recent insights and advancements. Int J Mol Sci. 2020;22(1):130. doi:10.3390/ijms22010130
  • Cheriyamundath S, A B-Z. Wnt/β-catenin target genes in colon cancer metastasis: the special case of L1CAM. Cancers. 2020;12(11):3444. doi:10.3390/cancers12113444
  • Ghahremanloo A, Javid H, Afshari AR, Hashemy SI. Investigation of the role of neurokinin-1 receptor inhibition using aprepitant in the apoptotic cell death through PI3K/Akt/NF-κB signal transduction pathways in colon cancer cells. Biomed Res Int. 2021;2021:1383878. doi:10.1155/2021/1383878
  • Jahanafrooz Z, Mosafer J, Akbari M, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J Cell Physiol. 2020;235(5):4153–4166. doi:10.1002/jcp.29337
  • Wegrecki M. CD1a-mediated immunity from a molecular perspective. Mol Immunol. 2023;158:43–53. doi:10.1016/j.molimm.2023.04.010
  • Cohen NR, Garg S, Brenner MB. Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immuno. 2009;102:1–94. doi:10.1016/S0065-2776(09)01201-2
  • Cotton RN, Wegrecki M, Cheng TY, et al. CD1a selectively captures endogenous cellular lipids that broadly block T cell response. J Exp Med. 2021;218(7). doi:10.1084/jem.20202699.
  • de Jong A, Ogg G. CD1a function in human skin disease. Mol Immunol. 2021;130:14–19. doi:10.1016/j.molimm.2020.12.006
  • Monnot GC, Wegrecki M, Cheng TY, et al. Staphylococcal phosphatidylglycerol antigens activate human T cells via CD1a. Nat Immunol. 2023;24(1):110–122. doi:10.1038/s41590-022-01375-z
  • La Rocca G, Anzalone R, Bucchieri F, Farina F, Cappello F, Zummo G. CD1a and antitumour immune response. Immunol Lett. 2004;95(1):1–4. doi:10.1016/j.imlet.2004.05.006
  • Belete TM. The current status of gene therapy for the treatment of cancer. Biologics. 2021;15:67–77.
  • Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi:10.1177/20503121211034366
  • Yoo HJ, Kim NY, Kim JH. Current Understanding of the roles of CD1a-restricted T cells in the immune system. Mol Cells. 2021;44(5):310–317. doi:10.14348/molcells.2021.0059
  • Park SJ, Yoon BH, Kim SK, Kim SY. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genomics. 2019;12(Suppl 5):101. doi:10.1186/s12920-019-0514-7
  • Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–e110. doi:10.1158/0008-5472.CAN-17-0307
  • Deng M, Brägelmann J, Schultze JL, Perner S. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinf. 2016;17(1):72. doi:10.1186/s12859-016-0917-9
  • Kosinski M, Biecek P, Kosinski MM. Package ‘RTCGA’. 2019.
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–995. doi:10.1093/nar/gks1193
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Lee Y, Sung B, Kang YJ, et al. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int j Oncol. 2014;44(5):1599–1606. doi:10.3892/ijo.2014.2339
  • Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–D963. doi:10.1093/nar/gkx1090
  • Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. doi:10.1016/j.xinn.2021.100141
  • Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–259.
  • von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–261. doi:10.1093/nar/gkg034
  • Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13(10):e0206239. doi:10.1371/journal.pone.0206239
  • Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020;48(W1):W244–W251. doi:10.1093/nar/gkaa467
  • Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–97. doi:10.1093/nar/gkt1248
  • Dyduch G, Tyrak KE, Glajcar A, Szpor J, Okoń K. CD207+/langerin positive dendritic cells in invasive and in situ cutaneous malignant melanoma. Postepy dermatologii i alergologii. 2017;34(3):233–239. doi:10.5114/ada.2017.67845
  • Chen X, Zhang J, Lei X, et al. CD1C is associated with breast cancer prognosis and immune infiltrates. BMC Cancer. 2023;23(1):129. doi:10.1186/s12885-023-10558-2
  • Zhang Q, Feng J, Liu K, Yang X, Huang Y, Tang B. STK11 mutation impacts CD1E expression to regulate the differentiation of macrophages in lung adenocarcinoma. Immun inflamma dis. 2023;11(7). doi:10.1002/iid3.958
  • Whiteside TL. FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert opini therapeu targ. 2018;22(4):353–363. doi:10.1080/14728222.2018.1451514
  • Sai Krishna AVS, Ramu A, Hariharan S, Sinha S, Donakonda S. Characterization of tumor microenvironment in glioblastoma multiforme identifies ITGB2 as a key immune and stromal related regulator in glial cell types. Comput Biol Med. 2023;165:107433. doi:10.1016/j.compbiomed.2023.107433
  • Giorello MB, Matas A, Marenco P, et al. CD1a- and CD83-positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients. Breast Cancer. 2021;28(6):1328–1339. doi:10.1007/s12282-021-01270-9
  • Ni YH, Zhang Lu ZY, Lu Z-Y, et al. Tumor-infiltrating CD1a(+) DCs and CD8(+)/FoxP3(+) ratios served as predictors for clinical outcomes in tongue squamous cell carcinoma patients. Pathol Onco Res. 2020;26(3):1687–1695. doi:10.1007/s12253-019-00701-5
  • El Hanbuli HM, Abou Sari MA, Dawoud NM. Basal cell carcinoma in xeroderma pigmentosa: reduced CD1a expression as a sensitive predictor of recurrence. Applied Immunohistochem Molecu Morp. 2023;31(4):245–254. doi:10.1097/PAI.0000000000001107
  • Huo FC, Zhu ZM, Pei DS. N(6) -methyladenosine (m(6)A) RNA modification in human cancer. Cell Proliferation. 2020;53(11):e12921. doi:10.1111/cpr.12921
  • Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52(10):710–718. doi:10.1136/jmedgenet-2015-103334
  • Du Y, Hou Y, Shi Y, Liu J, Li T. Long non-coding RNA ELFN1-AS1 promoted colon cancer cell growth and migration via the miR-191-5p/Special AT-rich sequence-binding protein 1 Axis. Front Oncol. 2020;10:588360. doi:10.3389/fonc.2020.588360
  • Wu Q, Meng WY, Jie Y, Zhao H. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J Cell Physiol. 2018;233(9):6750–6757. doi:10.1002/jcp.26383
  • Yang W, Redpath RE, Zhang C, Ning N. Long non-coding RNA H19 promotes the migration and invasion of colon cancer cells via MAPK signaling pathway. Oncol Lett. 2018;16(3):3365–3372. doi:10.3892/ol.2018.9052
  • Guo K, Gong W, Wang Q, et al. LINC01106 drives colorectal cancer growth and stemness through a positive feedback loop to regulate the Gli family factors. Cell Death Dis. 2020;11(10):869. doi:10.1038/s41419-020-03026-3
  • Ye S, Sun B, Wu W, et al. LINC01123 facilitates proliferation, invasion and chemoresistance of colon cancer cells. Biosci Rep. 2020;40(8). doi:10.1042/BSR20194062.
  • Liu Y, Zhang B, Cao WB, Wang HY, Niu L, Zhang GZ. Study on clinical significance of LncRNA EGOT expression in colon cancer and its effect on autophagy of colon cancer cells. Cancer Manage Res. 2020;12:13501–13512. doi:10.2147/CMAR.S285254