62
Views
0
CrossRef citations to date
0
Altmetric
General Medicine

Advances in the Study of Non-Coding RNA in the Signaling Pathway of Pulmonary Fibrosis

, , &
Pages 1419-1431 | Received 08 Jan 2024, Accepted 24 Mar 2024, Published online: 10 Apr 2024

References

  • Fang Y, Tian J, Fan Y, Cao P. Latest progress on the molecular mechanisms of idiopathic pulmonary fibrosis. Mol Biol Repo. 2020;47(12):9811–9820. doi:10.1007/s11033-020-06000-6
  • Wuyts WA, Wijsenbeek M, Bondue B, et al. Idiopathic pulmonary fibrosis: best practice in monitoring and managing a relentless fibrotic disease. Respiration. 2020;99(1):73–82. doi:10.1159/000504763
  • Kass DJ, Kaminski N. Evolving genomic approaches to idiopathic pulmonary fibrosis: moving beyond genes. Clin Transl Sci. 2011;4(5):372–379. doi:10.1111/j.1752-8062.2011.00287.x
  • Cui H, Xie N, Thannickal VJ, Liu G. The code of non-coding RNAs in lung fibrosis. Cell Mol Life Sci. 2015;72(18):3507–3519. doi:10.1007/s00018-015-1939-6
  • Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–1504. doi:10.1101/gad.1800909
  • Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5). doi:10.3390/ijms21051723
  • Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37. doi:10.1038/s41580-018-0045-7
  • Liu G, Friggeri A, Yang Y, et al. MiR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–1597. doi:10.1084/jem.20100035
  • Li S, Zhao J, Shang D, Kass DJ, Zhao Y. Ubiquitination and deubiquitination emerge as players in idiopathic pulmonary fibrosis pathogenesis and treatment. JCI Insight. 2018;3(10). doi:10.1172/jci.insight.120362
  • Scotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest. 2007;132(4):1311–1321. doi:10.1378/chest.06-2568
  • Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet. 2012;380(9842):680–688. doi:10.1016/S0140-6736(12)61144-1
  • Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol. 2018;71-72:112–127. doi:10.1016/j.matbio.2018.03.021
  • Fernandez IE, Eickelberg O. The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012;9(3):111–116. doi:10.1513/pats.201203-023AW
  • Saito S, Deskin B, Rehan M, et al. Novel mediators of idiopathic pulmonary fibrosis. Clin Sci. 2022;136(16):1229–1240. doi:10.1042/CS20210878
  • Zhou J, Xu Q, Zhang Q, Wang Z, Guan S. A novel molecular mechanism of microRNA-21 inducing pulmonary fibrosis and human pulmonary fibroblast extracellular matrix through transforming growth factor beta1-mediated SMADs activation. J Cell Biochem. 2018;119(9):7834–7843. doi:10.1002/jcb.27185
  • Tzavlaki K, Moustakas A. TGF-beta Signaling. Biomolecules. 2020;10(3). doi:10.3390/biom10030487
  • Hata A, Chen Y. TGF-beta signaling from receptors to Smads. Cold Spring Harbor Perspect Biol. 2016;8(9). doi:10.1101/cshperspect.a022061
  • Liang H, Xu C, Pan Z, et al. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther. 2014;22(6):1122–1133. doi:10.1038/mt.2014.42
  • Li X, Liu L, Shen Y, et al. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts. Biochem Biophys Res Commun. 2014;454(4):512–517. doi:10.1016/j.bbrc.2014.10.106
  • Wen F, Kohyama T, Sköld CM, et al. Glucocorticoids modulate TGF-β production by human fetal lung fibroblasts. Inflammation. 2003;27:9–19. doi:10.1023/a:1022683010976
  • Cushing L, Kuang PP, Qian J, et al. MiR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287–294. doi:10.1165/rcmb.2010-0323OC
  • Lian X, Chen X, Sun J, et al. MicroRNA-29b inhibits supernatants from silica-treated macrophages from inducing extracellular matrix synthesis in lung fibroblasts. Toxicol Res. 2017;6(6):878–888. doi:10.1039/c7tx00126f
  • Tong J, Wu Z, Wang Y, et al. Astragaloside IV synergizing with ferulic acid ameliorates pulmonary fibrosis by TGF-β1/Smad3 signaling. Evid Based Complement Alternat Med. 2021;2021:8845798. doi:10.1155/2021/8845798
  • Wang T, Li Y, Chen J, Xie L, Xiao T. TGF-β1/Smad3 signaling promotes collagen synthesis in pulmonary artery smooth muscle by down-regulating miR-29b. Int J Clin Exp Pathol. 2018;11:5592–5601
  • Pais H, Nicolas FE, Soond SM, et al. Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA. 2010;16(3):489–494. doi:10.1261/rna.1701210
  • Wang C, Song X, Li Y, et al. Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-beta1/Smad3 pathway via miR-140 upregulation. PLoS One. 2013;8(8). doi:10.1371/journal.pone.0070725
  • Wang X, Cheng Z, Dai L, et al. Knockdown of long noncoding RNA H19 represses the progress of pulmonary fibrosis through the transforming growth factor β/Smad3 pathway by regulating microRNA 140. Mol Cell Biol. 2019;39(12). doi:10.1128/MCB.00143-19
  • Ji X, Wu B, Fan J, et al. The anti-fibrotic effects and mechanisms of microRNA-486-5p in pulmonary fibrosis. Sci Rep. 2015;5:14131. doi:10.1038/srep14131
  • Das S, Kumar M, Negi V, et al. MicroRNA-326 regulates profibrotic functions of transforming growth factor-beta in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2014;50(5):882–892. doi:10.1165/rcmb.2013-0195OC
  • Ning J, Zhang H, Yang H. MicroRNA‑326 inhibits endometrial fibrosis by regulating TGF‑beta1/Smad3 pathway in intrauterine adhesions. Mol Med Rep. 2018;18(2):2286–2292. doi:10.3892/mmr.2018.9187
  • Qi Y, Zhao A, Yang P, Jin L, Hao C. MiR-34a-5p Attenuates EMT through targeting SMAD4 in silica-induced pulmonary fibrosis. J Cell Mol Med. 2020;24(20):12219–12224. doi:10.1111/jcmm.15853
  • Wang Y, Liu J, Tang H, et al. MiR‑221 targets HMGA2 to inhibit bleomycin‑induced pulmonary fibrosis by regulating TGF‑beta1/Smad3-induced EMT. Int J Mol Med. 2016;38(4):1208–1216. doi:10.3892/ijmm.2016.2705
  • Yang Z, Qu Z, Yi M, et al. MiR-448-5p inhibits TGF-beta1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. J Cell Physiol. 2019;234(6):8804–8814. doi:10.1002/jcp.27540
  • Saito S, Zhuang Y, Shan B, et al. Tubastatin ameliorates pulmonary fibrosis by targeting the TGFbeta-PI3K-Akt pathway. PLoS One. 2017;12(10):e0186615. doi:10.1371/journal.pone.0186615
  • Wang J, Hu K, Cai X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharmaceutica Sinica B. 2022;12(1):18–32. doi:10.1016/j.apsb.2021.07.023
  • Pang X, Shi H, Chen X, et al. MiRNA-34c-5p targets Fra-1 to inhibit pulmonary fibrosis induced by silica through p53 and PTEN/PI3K/Akt signaling pathway. Environ Toxicol. 2022;37(8):2019–2032. doi:10.1002/tox.23547
  • Yang Y, Liu L, Zhang Y, et al. MiR-503 targets PI3K p85 and IKK-beta and suppresses progression of non-small cell lung cancer. Int J Cancer. 2014;135(7):1531–1542. doi:10.1002/ijc.28799
  • Yan W, Wu Q, Yao W, et al. MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep. 2017;7(1):11313. doi:10.1038/s41598-017-11904-8
  • Yuan J, Li P, Pan H, et al. MiR-542-5p attenuates fibroblast activation by targeting integrin alpha6 in silica-induced pulmonary fibrosis. Int J Mol Sci. 2018;19(12). doi:10.3390/ijms19123717
  • Zhu M, An Y, Zhang X, Wang Z, Duan H. Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell Tissue Res. 2019;378(2):255–265. doi:10.1007/s00441-019-03054-2
  • Xie B, Lu C, Chen C, Zhou J, Deng Z. MiR-135a alleviates silica-induced pulmonary fibrosis by targeting NF-kappaB/inflammatory signaling pathway. Mediators Inflammat. 2020;2020. doi:10.1155/2020/1231243
  • Xiao K, He W, Guan W, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-kappaB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis. 2020;11(10):863. doi:10.1038/s41419-020-03034-3
  • Li J, Kong X, Jiang S, et al. MiR-627/HMGB1/NF-kappaB regulatory loop modulates TGF-beta1-induced pulmonary fibrosis. J Cell Biochem. 2019;120(3):2983–2993. doi:10.1002/jcb.27038
  • Alharbi KS, Fuloria NK, Fuloria S, et al. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact. 2021;345. doi:10.1016/j.cbi.2021.109568
  • Yin M, Ren X, Zhang X, et al. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-kappaB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene. 2015;34(6):691–703. doi:10.1038/onc.2013.597
  • Laws TR, Clark GC, D’Elia RV. Immune profiling of the progression of a BALB/c mouse aerosol infection by Burkholderia pseudomallei and the therapeutic implications of targeting HMGB1. Int J Infect Dis. 2015;40:1–8. doi:10.1016/j.ijid.2015.09.003
  • Qi L, Sun X, Li FE, et al. HMGB1 promotes mitochondrial dysfunction-triggered striatal neurodegeneration via autophagy and apoptosis activation. PLoS One. 2015;10(11):e0142901. doi:10.1371/journal.pone.0142901
  • Tabata C, Kanemura S, Tabata R, et al. Serum HMGB1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol. 2013;47(8):684–688. doi:10.1097/MCG.0b013e318297fa65
  • Tabata C, Terada T, Tabata R, et al. Serum thioredoxin-1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol. 2013;47(1):e7–e11. doi:10.1097/MCG.0b013e31824e901b
  • Xie Y, Yu N, Chen Y, Zhang K, Ma HY, Di Q. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-kappaB signaling pathway. Mol Med Rep. 2017;16(2):1691–1700. doi:10.3892/mmr.2017.6772
  • Shi S, Li H. Overexpressed microRNA-140 inhibits pulmonary fibrosis in interstitial lung disease via the Wnt signaling pathway by downregulating osteoglycin. Am J Physiol Cell Physiol. 2020;319(5):C895–C905. doi:10.1152/ajpcell.00479.2019
  • Henderson J, Wilkinson S, Przyborski S, Stratton R, O’Reilly S. MicroRNA27a-3p mediates reduction of the Wnt antagonist sFRP-1 in systemic sclerosis. Epigenetics. 2021;16(7):808–817. doi:10.1080/15592294.2020.1827715
  • Zhuang Y, Dai J, Wang Y, et al. MiR-338*targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition. Am J Transl Res. 2016;8:3206–3213
  • Zhao S, Xiao X, Sun S, et al. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway. Pathol Res Pract. 2018;214(9):1315–1323. doi:10.1016/j.prp.2018.02.014
  • Li-jing L, Hong Q, Ke H, Zizhen Z, Jian-bin H. MiR-27a-3p inhibited synthesis of Col I and Col III in pulmonary fibroblasts through Wnt3a/β-catenin signaling pathway (in Chinese). CPB. 2019;35(02):229–234
  • Wang W, Min L, Qiu X, et al. Biological function of long non-coding RNA (LncRNA) xist. Front Cell Develop Biol. 2021;9:645–647. doi:10.3389/fcell.2021.645647
  • Jiang H, Chen Y, Yu T, et al. Inhibition of lncRNA PFRL prevents pulmonary fibrosis by disrupting the miR-26a/smad2 loop. Am J Physiol Lung Cell Mol Physiol. 2018;315(4):563–575. doi:10.1152/ajplung.00434.2017
  • Huang R, Bai C, Liu X, et al. The p53/RMRP/miR122 signaling loop promotes epithelial-mesenchymal transition during the development of silica-induced lung fibrosis by activating the notch pathway. Chemosphere. 2021;263:128–133. doi:10.1016/j.chemosphere.2020.128133
  • Zhang Y, Yao X, Wu Y, Cao G, Han D. LncRNA NEAT1 regulates pulmonary fibrosis through miR-9-5p and TGF-β signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(16):8483–8492
  • Khan K, Irfan M, Sattar AA, et al. LncRNA SNHG6 role in clinicopathological parameters in cancers. Eur J Med Res. 2023;28(1):363. doi:10.1186/s40001-023-01358-2
  • Deng W, Zhang Y, Fang P, Shi H, Yang S. Silencing lncRNA Snhg6 mitigates bleomycin-induced pulmonary fibrosis in mice via miR-26a-5p/TGF-beta1-smads axis. Environ Toxicol. 2022;37(10):2375–2387. doi:10.1002/tox.23603
  • Saurin AJ, Delfini MC, Maurel-Zaffran C, Graba Y. The generic facet of hox protein function: (Trends in Genetics 34, 941–953, 2018). Trends Genet. 2019;35(4):316. doi:10.1016/j.tig.2018.11.006
  • Lin S, Zhang R, Xu L, et al. LncRNA Hoxaas3 promotes lung fibroblast activation and fibrosis by targeting miR-450b-5p to regulate Runx1. Cell Death Dis. 2020;11(8):706. doi:10.1038/s41419-020-02889-w
  • Li C, Wang Z, Zhang J, et al. Crosstalk of mRNA, miRNA, lncRNA, and circRNA and their regulatory pattern in pulmonary fibrosis. Mol Ther Nucleic Acids. 2019;18:204–218. doi:10.1016/j.omtn.2019.08.018
  • Shen K, Li R, Zhang X, et al. Acetyl oxygen benzoate engeletin ester promotes KLF4 degradation leading to the attenuation of pulmonary fibrosis via inhibiting TGFβ1-smad/p38MAPK-lnc865/lnc556-miR-29b-2-5p-STAT3 signal pathway. Aging. 2021;13(10):13807–13821
  • Liu P, Zhao L, Gu Y, Zhang M, Gao H, Meng Y. LncRNA SNHG16 promotes pulmonary fibrosis by targeting miR-455-3p to regulate the Notch2 pathway. Respir Res. 2021;22(1):44. doi:10.1186/s12931-021-01632-z
  • Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem. 2019;120(7):11022–11032. doi:10.1002/jcb.28380
  • Li J, Li P, Zhang G, Qin P, Zhang D, Zhao W. CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts. Cell Death Dis. 2020;11(7):553. doi:10.1038/s41419-020-02747-9
  • Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis. Toxicol Sci. 2018;166(2):465–478. doi:10.1093/toxsci/kfy221
  • Zhang L, Chi X, Luo W, et al. Lung myofibroblast transition and fibrosis is regulated by circ0044226. Int J Biochem Biotechnol. 2020;118:105660. doi:10.1016/j.biocel.2019.105660
  • Xu Q, Cheng D, Li G, et al. CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. Int J Bio Sci. 2021;17(9):2294–2307. doi:10.7150/ijbs.57915
  • Zhang JX, Lu J, Xie H, et al. CircHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis. 2019;10(3):182. doi:10.1038/s41419-019-1430-7
  • Bai J, Deng J, Han Z, et al. CircRNA_0026344 via exosomal miR-21 regulation of Smad7 is involved in aberrant cross-talk of epithelium-fibroblasts during cigarette smoke-induced pulmonary fibrosis. Toxicol Lett. 2021;347:58–66. doi:10.1016/j.toxlet.2021.04.017