295
Views
13
CrossRef citations to date
0
Altmetric
Review

Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 215-226 | Published online: 14 Jan 2020

References

  • Chau DHS. Wood block printing, an essential medium of culture inheritance in Chinese history. J Hong Kong Branch R Asiat Soc. 1978;18:175–189.
  • van Delft M. Print culture and peripheries in early Modern Europe. A contribution to the history of printing and the book trade in small European and Spanish cities, written by Benito Rial Costas. Quaerendo. 2015;45(1–2):174–177. doi:10.1163/15700690-12341318
  • Hogenkamp B. A social history of the media. From Gutenberg to the internet. By B riggs, A sa and P eter B urke. Polity, Cambridge 2002. ix, 374 pp. Ill. 55.00 (Paper: 15.99.). Int Rev Soc His. 2004;49:143–145. doi:10.1017/S0020859004011435
  • Goldberg D. The history of 3D Printing. Prod Des Dev. 2014.
  • International Conference on Biomedical, E. The 15th International Conference on Biomedical Engineering: ICBME 2013, 4th to 7th December 2013, Singapore. Goh, J. C. H., Ed Cham: Springer; 2013.
  • Hull CW. Apparatus for production of three-dimensional objects by stereolithography. 1986 US Pat 4575330.
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–785. doi:10.1038/nbt.295825093879
  • Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2(1):014110. doi:10.1088/1758-5082/2/1/01411020811125
  • 3D bio-printing market worth $1.82 bn By 2022. BioSpectrum Asia. 2015.
  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363. doi:10.1615/CritRevBiomedEng.v40.i5.1023339648
  • Li X, Wang L, Fan Y, Feng Q, Cui F, Watari F. Nanostructured scaffolds for bone tissue engineering. Hoboken. 2013;101:2424–2435.
  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick J. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15–56. doi:10.1166/jnn.2014.912724730250
  • Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504. doi:10.1016/j.mattod.2013.11.017
  • Dai G, Lee V. Three-dimensional bioprinting and tissue fabrication: prospects for drug discovery and regenerative medicine. Adv Health Care Technol. 2015;23. doi:10.2147/AHCT
  • Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med. 2013;7(8):631–641. doi:10.1002/term.v7.822396130
  • Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl. 2011;26(3):359. doi:10.1177/088532821037328520659962
  • Mi G, Sun L, Alsbaiee A, et al. Functionalized Rosette nanotubes as a bone regenerative and anti-microbial agent. Tissue Eng Part A. 2015;21:S306.
  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518. doi:10.1038/nmat142116003400
  • Keriquel V, Guillemot F, Arnault I, et al. in vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2(1):014101. doi:10.1088/1758-5082/2/1/01410120811116
  • Holmes B, Bulusu K, Plesniak M, Zhang LG. Asynergistic approach to the design, fabrication and evaluation of 3d printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology. 2016;27(6):064001. doi:10.1088/0957-4484/27/6/06400126758780
  • Zhao H, Liang W. A novel comby scaffold with improved mechanical strength for bone tissue engineering. Mater Lett. 2017;194:220–223. doi:10.1016/j.matlet.2017.02.059
  • Hoyer B, Bernhardt A, Heinemann S, Stachel I, Meyer M, Gelinsky M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules. 2012;13(4):1059. doi:10.1021/bm201776r22364350
  • Rajkumar M, Meenakshisundaram N, Rajendran V. Development of nanocomposites based on hydroxyapatite/sodium alginate: synthesis and characterisation. Mater Charact. 2011;62(5):469–479. doi:10.1016/j.matchar.2011.02.008
  • Zandi M, Mirzadeh H, Mayer C, et al. Biocompatibility evaluation of nano‐rod hydroxyapatite/gelatin coated with nano‐HAp as a novel scaffold using mesenchymal stem cells. J Biomed Mater Res Part A. 2010;92(4):1244–1255. doi:10.1002/jbm.a.32452
  • Luo Y, Li Y, Qin X, Wa Q. 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des. 2018;146:12–19. doi:10.1016/j.matdes.2018.03.002
  • Wang M, Favi P, Cheng X, et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 2016;46:256–265. doi:10.1016/j.actbio.2016.09.03027667017
  • Malda J, Visser J, Melchels FP, et al. 25th Anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011–5028. doi:10.1002/adma.20130204224038336
  • Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/ОІ-TCP for bone tissue engineering. Bone. 2010;46(2):386–395. doi:10.1016/j.bone.2009.09.031
  • Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T. Fabrication of in-situ foamed chitosan/ОІ-TCP scaffolds for bone tissue engineering application. Mater Lett. 2012;85(C):124–127. doi:10.1016/j.matlet.2012.07.002
  • Mikos AG, Lyman MD, Freed LE, Langer R. Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials. 1994;15(1):55–58. doi:10.1016/0142-9612(94)90197-X8161659
  • Sultana N, Wang M. Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Eur Soc Biomater. 2008;19(7):2555–2561.
  • Sun K, Li R, Jiang W, Sun Y, Li H. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Biochem Biophys Res Commun. 2016;477(4):1085–1091. doi:10.1016/j.bbrc.2016.07.05027404126
  • Lo H, Ponticiello MS, Leong KW. Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng. 1995;1(1):15. doi:10.1089/ten.1995.1.1519877912
  • Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47(1):8–17. doi:10.1002/(ISSN)1097-463610400875
  • Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P. Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res. 1996;30(4):449. doi:10.1002/(ISSN)1097-46368847353
  • Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44(4):446. doi:10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F10397949
  • Mohamed O, Masood S, Bhowmik J. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf. 2015;3(1):42–53. doi:10.1007/s40436-014-0097-7
  • Anitha R, Arunachalam S, Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Tech. 2001;118(1):385–388. doi:10.1016/S0924-0136(01)00980-3
  • Horvath D, Noorani R, Mendelson M. Improvement of surface roughness on ABS 400 polymer using Design of Experiments (DOE). Mater Sci Forum. 2007;561–565:2389–2392. doi:10.4028/www.scientific.net/MSF.561-565
  • Aston DE, Bow JR, Gangadean DN. Mechanical properties of selected nanostructured materials and complex bio-nano, hybrid and hierarchical systems. Int Mater Rev. 2013;58(3):167–202. doi:10.1179/1743280412Y.0000000012
  • Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–1185. doi:10.1016/S0142-9612(01)00232-011791921
  • Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–6130. doi:10.1016/j.biomaterials.2010.04.05020478613
  • Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3:61. doi:10.1007/s40204-014-0026-726798575
  • Qiu Y, Zhang N, Kang Q, An Y, Wen X. Chemically modified light‐curable chitosans with enhanced potential for bone tissue repair. J Biomed Mater Res Part A. 2009;89(3):772–779. doi:10.1002/jbm.a.32017
  • Schuster M, Turecek C, Weigel G, et al. Gelatin‐based photopolymers for bone replacement materials. J Polym Sci Part a Polym Chem. 2009;47(24):7078–7089. doi:10.1002/pola.23747
  • Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Murr L, Gaytan SM, Ramirez D, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. 2012;28:1–14. doi:10.1016/S1005-0302(12)60016-4
  • Frank M, Edwin M, Krista A, Lawrence M, Shujun L, Yuxing T. Open-cellular Co-base and Ni-Base superalloys fabricated by electron beam melting. Materials. 2011;4(4):782–790. doi:10.3390/ma404078228879949
  • Wysocki B, Maj P, Krawczyńska A, et al. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM). J Mater Process Tech. 2017;241:13–23. doi:10.1016/j.jmatprotec.2016.10.022
  • Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C. 2008;28(3):366–373. doi:10.1016/j.msec.2007.04.022
  • Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder fractions. J Mater Process Tech. 2013;213(12):2109–2118. doi:10.1016/j.jmatprotec.2013.06.010
  • Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed. 2010;3(3):249–259. doi:10.1016/j.jmbbm.2009.10.006
  • Munaz A, Vadivelu RK, St. John J, Barton M, Kamble H, Nguyen N-T. Three-dimensional printing of biological matters. J Sci Adv Mater Devices. 2016;1(1):1–17.
  • Xu T, Kincaid H, Atala A, Yoo JJ. High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci E-T Asme. 2008;130(2). doi:10.1115/1.2903064
  • Chrisey DB. Materials Processing: the power of direct writing. Science. 2000;289(5481):879–881. doi:10.1126/science.289.5481.87917839154
  • Colina M, Serra P, Fernandez-Pradas JM, Sevilla L, Morenza JL. DNA deposition through laser induced forward transfer. Biosens Bioelectron. 2005;20(8):1638–1642. doi:10.1016/j.bios.2004.08.04715626620
  • Ringeisen B, Kim H, Barron J, et al. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;10(3–4):483–491. doi:10.1089/10763270432306184315165465
  • Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 1996;45:371.8727757
  • Downey PA, Siegel MI. Bone biology and the clinical implications for osteoporosis. (Perspective). Phys Ther. 2006;86(1):77. doi:10.1093/ptj/86.1.7716386064
  • Florencio-Silva R, Sasso G, Sasso-Cerri E, Simoes M, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:1–17. doi:10.1155/2015/421746
  • Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212. doi:10.1021/acs.chemrev.7b0007428756658
  • Yang J-U, Cho JH, Yoo MJ. Selective metallization on copper aluminate composite via laser direct structuring technology. Composites Part B. 2017;110:361–367. doi:10.1016/j.compositesb.2016.11.041
  • Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013;9(3):5521–5530. doi:10.1016/j.actbio.2012.10.04123142224
  • Seyednejad H, Gawlitta D, Kuiper RV, et al. InВ vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(Оµ-caprolactone). Biomaterials. 2012;33(17):4309–4318. doi:10.1016/j.biomaterials.2012.03.002
  • Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C. 2003;23(5):611–620. doi:10.1016/S0928-4931(03)00052-3
  • Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three‐dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74(2):782–788. doi:10.1002/jbm.b.30291
  • Warnke PH, Seitz H, Warnke F, et al. Ceramic scaffolds produced by computer‐assisted 3D printing and sintering: characterization and biocompatibility investigations. J Biomed Mater Res B Appl Biomater. 2010;93(1):212–217.
  • Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Eur Soc Biomater. 2009;20(6):1281–1289.
  • Balçik C, Tokdemir T, Şenköylü A, et al. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Acta Biomater. 2007;3(6):985–996. doi:10.1016/j.actbio.2007.04.00417574942
  • Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171–5180. doi:10.1016/j.biomaterials.2003.12.02315109841
  • Seah KHW, Thampuran R, Teoh SH. The influence of pore morphology on corrosion. Corros Sci. 1998;40(4):547–556. doi:10.1016/S0010-938X(97)00152-2
  • Vasilescu E, Drob P, Vasilescu C, et al. Corrosion resistance of the new Ti‐25Ta‐25Nb alloy in severe functional conditions. Mater Corros. 2010;61(11):947–954. doi:10.1002/maco.201005740
  • Oh I, Nomura N, Hanada S. Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering. Mater Trans. 2002;43(3):443–446. doi:10.2320/matertrans.43.443
  • Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg. Scr Mater. 2001;45(10):1147–1153. doi:10.1016/S1359-6462(01)01132-0
  • Oh I-H, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater. 2003;49(12):1197–1202. doi:10.1016/j.scriptamat.2003.08.018
  • Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res Part A. 2013;101(1):272–284. doi:10.1002/jbm.a.34326
  • Khalyfa A, Vogt S, Weisser J, et al. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Eur Soc Biomater. 2007;18(5):909–916.
  • Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–2953. doi:10.1016/j.biomaterials.2008.04.02318440630
  • Stevens MM, George J. Exploring and engineering the cell surface interface. Science. 2005;310:1135–1138. doi:10.1126/science.110658716293749
  • Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434–441. doi:10.1016/j.tibtech.2008.04.00918585808
  • Murphy CM, Haugh MG, Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461–466. doi:10.1016/j.biomaterials.2009.09.063
  • Bramfeldt H, Sabra G, Centis V, Vermette P. Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr Med Chem. 2010;17:3944–3967. doi:10.2174/09298671079320532720939827
  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3431. doi:10.1016/j.biomaterials.2006.01.03916504284
  • Chen X, Xu L, Li X, Egger J. Computer-aided implant design for the restoration of cranial defects. Sci Rep. 2017;7(1):4199. doi:10.1038/s41598-017-04454-628646207
  • Kim BJ, Hong KS, Park KJ, Park DH, Chung YG, Kang SH. Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc. 2012;52(6):541–546. doi:10.3340/jkns.2012.52.6.54123346326
  • Wang J, Yang M, Zhu Y, Wang L, Tomsia AP, Mao C. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv Mater. 2014;26(29):4961–4966. doi:10.1002/adma.20140015424711251
  • De Coppi P, Bartsch G Jr., Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–106. doi:10.1038/nbt127417206138
  • Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013;5(1):015001. doi:10.1088/1758-5082/5/1/01500123172542
  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–319. doi:10.1038/nbt.341326878319
  • Tsigkou O, Pomerantseva I, Spencer JA, et al. Engineered vascularized bone grafts. Proc Natl Acad Sci U S A. 2010;107(8):3311–3316. doi:10.1073/pnas.090544510720133604
  • Levenberg S, Rouwkema J, Macdonald M, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23(7):879–884. doi:10.1038/nbt110915965465
  • Trombetta R, Inzana J, Schwarz E, Kates S, Awad H. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. J Biomed Eng Soc. 2017;45(1):23–44.
  • Tanaka Y, Gong JP, Osada Y. Novel hydrogels with excellent mechanical performance. Prog Polym Sci. 2005;30(1):1–9. doi:10.1016/j.progpolymsci.2004.11.003
  • Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008;26(1):127–134. doi:10.1634/stemcells.2007-052017901398
  • Pires D, Hedrick JL, De Silva A, et al. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science. 2010;328(5979):732. doi:10.1126/science.118785120413457
  • Lee Y-B, Polio S, Lee W, et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol. 2010;223(2):645–652. doi:10.1016/j.expneurol.2010.02.01420211178