197
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Preparation of brushite cements with improved properties by adding graphene oxide

, , &
Pages 3785-3797 | Published online: 27 May 2019

References

  • Nienhaus A, Hauptmann R, Fässler TF. ∞1[HgGe9]2- - a polymer with Zintl ions as building blocks covalently linked by heteroatoms. Angew Chemie Int Ed. 2002;41(17):3213–3215. doi:10.1002/1521-3773(20020902)41
  • Ginebra MP. Calcium phosphate bone cements. Orthop Bone Cem. 2008;206–230. doi:10.1533/9781845695170.2.206
  • Goldstein SA, Moalli MR. Current concepts in tissue engineering: cell, matrices, and genes. Curr Opin Orthop. 2001;12(5):424–427. doi:10.1097/00001433-200110000-00010
  • Zamanian A, Moztarzadeh F, Kordestani S, Hesaraki S, Tahriri M. Novel calcium hydroxide/nanohydroxyapatite composites for dental applications: in vitro study. Adv Appl Ceram. 2010;109(7):440–444. doi:10.1179/174367610X12804792635107
  • Roy M, Devoe K, Bandyopadhyay A, Bose S. Mechanical property and in vitro biocompatibility of brushite cement modified by polyethylene glycol. Mater Sci Eng C. 2012;32(8):2145–2152. doi:10.1016/j.msec.2012.05.020
  • Engstrand J, Persson C, Engqvist H. The effect of composition on mechanical properties of brushite cements. J Mech Behav Biomed Mater. 2014;29:81–90. doi:10.1016/j.jmbbm.2013.08.02424064324
  • Zhao Y, Sun KN, Wang WL, et al. Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite. Ceram Int. 2013;39(7):7627–7634. doi:10.1016/j.ceramint.2013.03.018
  • Zhang Z. Metal mediated cross-coupling reactions for carbon-carbon and carbon-nitrogen bonds formation under neutral pH conditions by accepted: Dean of the Graduate School. Thesis. 2011;5–8. doi:10.1002/smll
  • Ramanathan T, Abdala AA, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3(6):327–331. doi:10.1038/nnano.2008.9618654541
  • Zhang L, Liu W, Yue C, et al. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon N Y. 2013;61:105–115. doi:10.1016/j.carbon.2013.04.074
  • Mehrali M, Moghaddam E, Shirazi SFS, et al. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces. 2014;6(6):3947–3962. doi:10.1021/am500845x24588873
  • Liu H, Cheng J, Chen F, et al. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: biomimetic and in vitro evaluation. Nanoscale. 2014;6(10):5315–5322. doi:10.1039/c4nr00355a24699835
  • Li M, Wang Y, Liu Q, et al. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B. 2013;1(4):475–484. doi:10.1039/c2tb00053a
  • Farzadi A, Solati-Hashjin M, Bakhshi F, Aminian A. Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram Int. 2011;37(1):65–71. doi:10.1016/j.ceramint.2010.08.021
  • Lim HN, Huang NM, Lim SS, Harrison I, Chia CH. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomedicine. 2011;6:1817–1823. doi:10.2147/IJN.S2339221931479
  • Daculsi G, Ambrosio L. Development of a resorbable calcium phosphate cement with load bearing capacity. Bioceram Dev Appl. 2016;04:01. doi:10.4172/2090-5025.1000074
  • Unosson JE, Persson C, Engqvist H. An evaluation of methods to determine the porosity of calcium phosphate cements. J Biomed Mater Res Part B Appl Biomater. 2015;103(1):62–71. doi:10.1002/jbm.b.3317324764258
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials. 2006;27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.01716448693
  • Jamshidi P, Bridson RH, Wright AJ, Grover LM. Brushite cement additives inhibit attachment to cell culture beads. Biotechnol Bioeng. 2013;110(5):1487–1494. doi:10.1002/bit.v110.523242924
  • Ghomash Pasand E, Nemati A, Solati-Hashjin M, Arzani K, Farzadi A. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate. Int J Miner Metall Mater. 2012;19(5):441–445. doi:10.1007/s12613-012-0576-4
  • Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y. Letters to the editor size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon N Y. 2009;47(14):3365–3368. doi:10.1016/j.carbon.2009.07.045
  • Ma R, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. 2009;3(12):3884–3890. doi:10.1021/nn901047219957928
  • Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012;8(2):474–487. doi:10.1016/j.actbio.2011.08.00521856456
  • Baradaran S, Basirun WJ, Mahmoudian MR, Hamdi M, Alias Y. Synthesis and characterization of monetite prepared using a sonochemical method in a mixed solvent system of water/ethylene glycol/N,N-dimethylformamide. Metall Mater Trans A Phys Metall Mater Sci. 2013;44(5):2331–2338. doi:10.1007/s11661-012-1595-5
  • Zhong H, Wang L, Fan Y, et al. Mechanical properties and bioactivity of β-Ca2SiO4ceramics synthesized by spark plasma sintering. Ceram Int. 2011;37(7):2459–2465. doi:10.1016/j.ceramint.2011.03.037
  • Lee JH, Shin YC, Lee S, Jin OS, Kang SH. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Nat Publ Gr. 2015;1–13. doi:10.1038/srep18833
  • Zhang X, Hu W, Li J, Tao L, Wei Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res. 2012;1:62. doi:10.1039/c2tx20006f
  • Chou SY, Cheng CM, LeDuc PR. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells. Biomaterials. 2009;30(18):3136–3142. doi:10.1016/j.biomaterials.2009.02.03719299009
  • Wang G, Zheng L, Zhao H, et al. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng Part A. 2011;17(9–10):1341–1349. doi:10.1089/ten.tea.2010.049721247339