145
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Immobilization studies of Candida Antarctica lipase B on gallic acid resin-grafted magnetic iron oxide nanoparticles

, , , &
Pages 3235-3244 | Published online: 03 May 2019

References

  • Cen Y, Li D, Xu J, Wu Q, Wu Q, Lin X. Highly focused library-based engineering of Candida antarctica lipase B with (S)-selectivity towards sec-alcohols. Adv Synth Catal. 2019;361(1):126–134. doi:10.1002/adsc.201800711
  • Gotor-Fernández V, Busto E, Gotor V. Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal. 2006;348(7‐8):797–812. doi:10.1002/adsc.200606057
  • Anderson EM, Larsson KM, Kirk O. One biocatalyst–many applications: the use of Candida Antarctica B-lipase in organic synthesis. Biocatal Biotransform. 1998;16(3):181–204. doi:10.3109/10242429809003198
  • Secundo F, Carrea G. Lipase activity and conformation in neat organic solvents. J Mol Catal B. 2002;19–20:93–102. doi:10.1016/S1381-1177(02)00155-8
  • Idris A, Bukhari A. Immobilized Candida antarctica lipase B: hydration, stripping off and application in ring opening polyester synthesis. Biotechnol Adv. 2012;30(3):550–563. doi:10.1016/j.biotechadv.2011.10.00222041165
  • Ghanem A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron. 2007;63(8):1721–1754. doi:10.1016/j.tet.2006.09.110
  • Hasegawa S, Azuma M, Takahashi K. Enzymatic esterification of lactic acid, utilizing the basicity of particular polar organic solvents to suppress the acidity of lactic acid. J Chem Technol Biotechnol. 2008;83(11):1503–1510. doi:10.1002/jctb.v83:11
  • Enzyme‐catalyzed ring‐opening polymerization of unsubstituted β‐Lactam. Macromol Rapid Commun. 2008;29(10):794–797. doi:10.1002/marc.200800117
  • Palomo JM, Muñoz G, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisan J. Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. 2002;19.
  • Bornscheuer UT, Bessler C, Srinivas R, Krishna SH. Optimizing lipases and related enzymes for efficient application. Trends Biotechnol. 2002;20(10):433–437.12220906
  • Miletic N. Improved Biocatalysts Based on Candida Antarctica Lipase B Immobilization. 2009.
  • Uppenberg J, Hansen MT, Patkar S, Jones TA. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure. 1994;2(4):293–308.8087556
  • Uppenberg J, Ohrner N, Norin M, et al. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry. 1995;34(51):16838–16851.8527460
  • Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online. 2016;18:2. doi:10.1186/s12575-016-0033-226766927
  • Hlady V, Buijs J. Protein adsorption on solid surfaces. Curr Opin Biotechnol. 1996;7(1):72–77.8791316
  • Brigida AI, Pinheiro AD, Ferreira AL, Goncalves LR. Immobilization of Candida antarctica lipase B by adsorption to green coconut fiber. Appl Biochem Biotechnol. 2008;146(1–3):173–187. doi:10.1007/s12010-007-8072-418421597
  • Miletić N, Vuković Z, Nastasović A, Loos K. Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins—versatile immobilization supports for biocatalysts. J Mol Catal B. 2009;56(4):196–201. doi:10.1016/j.molcatb.2008.04.012
  • Goradia D, Cooney J, Hodnett BK, Magner E. The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. J Mol Catal B. 2005;32(5):231–239. doi:10.1016/j.molcatb.2004.12.007
  • Dumitriu E, Secundo F, Patarin J, Fechete I. Preparation and properties of lipase immobilized on MCM-36 support. J Mol Catal B. 2003;22(3):119–133. doi:10.1016/S1381-1177(03)00015-8
  • Bai Y-X, Li Y-F, Yang Y, Yi L-X. Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochem. 2006;41(4):770–777. doi:10.1016/j.procbio.2005.09.012
  • Kumar A, Gross RA, Jendrossek D. Poly(3-hydroxybutyrate)-depolymerase from pseudomonas lemoignei: catalysis of esterifications in organic media. J Org Chem. 2000;65(23):7800–7806.11073584
  • Mahapatro A, Kumar A, Kalra B, Gross RA. Solvent-free adipic acid/1,8-octanediol condensation polymerizations catalyzed by Candida antartica lipase B. Macromolecules. 2004;37(1):35–40. doi:10.1021/ma025796w
  • Hu J, Gao W, Kulshrestha A, Gross RA. “Sweet polyesters”: lipase-catalyzed condensation−polymerizations of alditols. Macromolecules. 2006;39(20):6789–6792. doi:10.1021/ma0612834
  • Peeters J, Palmans ARA, Veld M, Scheijen F, Heise A, Meijer EW. Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization. Biomacromolecules. 2004;5(5):1862–1868. doi:10.1021/bm049794q15360299
  • Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127(22):8168–8173. doi:10.1021/ja042898o15926845
  • Miletić N, Abetz V, Ebert K, Loos K. Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromol Rapid Commun. 2010;31(1):71–74. doi:10.1002/marc.20090049721590839
  • Dessouki AM, Atia KS. Immobilization of adenosine deaminase onto agarose and casein. Biomacromolecules. 2002;3(3):432–437.12005511
  • Duracher D, Elaïssari A, Mallet F, Pichot C. Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core−shell poly(styrene)−poly(N-isopropylacrylamide) particles. Langmuir. 2000;16(23):9002–9008. doi:10.1021/la0004045
  • Fernandez-Lorente G, Fernández-Lafuente R, Palomo JM, et al. Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. J Mol Catal B. 2001;11(4):649–656. doi:10.1016/S1381-1177(00)00080-1
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 2007;40(6):1451–1463. doi:10.1016/j.enzmictec.2007.01.018
  • Wilson L, Palomo JM, Fernández-Lorente G, Illanes A, Guisán JM, Fernández-Lafuente R. Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme Microb Technol. 2006;38(7):975–980. doi:10.1016/j.enzmictec.2005.08.032
  • Can M, Bulut E, Özacar M. Synthesis and characterization of gallic acid resin and its interaction with palladium(II), rhodium(III) chloro complexes. Ind Eng Chem Res. 2012;51(17):6052–6063. doi:10.1021/ie300437u
  • Singh A, Mukhopadhyay M. Immobilization of Candida antarctica lipase onto cellulose acetate-coated Fe2O3 nanoparticles for glycerolysis of olive oil. 2014;31.
  • Lei L, Bai Y, Li Y, Yi L, Yang Y, Xia C. Study on immobilization of lipase onto magnetic microspheres with epoxy groups. J Magn Magn Mater. 2009;321(4):252–258. doi:10.1016/j.jmmm.2008.08.047
  • Ding Y, Hu Y, Zhang L, Chen Y, Jiang X. Synthesis and magnetic properties of biocompatible hybrid hollow spheres. Biomacromolecules. 2006;7(6):1766–1772. doi:10.1021/bm060085h16768396
  • Liu X, Guan Y, Shen R, Liu H. Immobilization of lipase onto micron-size magnetic beads. J Chromatogr B. 2005;822(1):91–97. doi:10.1016/j.jchromb.2005.06.001
  • Dyal A, Loos K, Noto M, et al. Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc. 2003;125(7):1684–1685. doi:10.1021/ja021223n12580578
  • Ren Y, Rivera JG, He L, Kulkarni H, Lee D-K, Messersmith PB. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol. 2011;11(1):63. doi:10.1186/1472-6750-11-3521649934
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26(1):62–69. doi:10.1016/0021-9797(68)90272-5
  • Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem (Int Ed English). 2007;46(8):1222–1244. doi:10.1002/anie.200602866
  • Woo E, Ponvel KM, Ahn I-S, Lee C-H. Synthesis of magnetic/silica nanoparticles with a core of magnetic clusters and their application for the immobilization of His-tagged enzymes. J Mater Chem. 2010;20(8):1511–1515. doi:10.1039/B918682D
  • Tie S-L, Lee H-C, Bae Y-S, Kim M-B, Lee K, Lee C-H. Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property. Colloids Surf A. 2007;293(1):278–285. doi:10.1016/j.colsurfa.2006.07.044
  • de Oliveira PC, Alves GM, de Castro HF. Immobilisation studies and catalytic properties of microbial lipase onto styrene–divinylbenzene copolymer. Biochem Eng J. 2000;5(1):63–71. doi:10.1016/S1369-703X(99)00061-3
  • Li C, Tan T, Zhang H, Feng W. Analysis of the conformational stability and activity of Candida antarctica lipase B in organic solvents: insight from molecular dynamics and quantum mechanics/simulations. J Biol Chem. 2010;285(37):28434–28441. doi:10.1074/jbc.M110.13620020601697