582
Views
55
CrossRef citations to date
0
Altmetric
Review

Manganese dioxide nanosheets: from preparation to biomedical applications

, , , , , & show all
Pages 4781-4800 | Published online: 03 Jul 2019

References

  • Mansouri A, Gattolliat C, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018;155:629–647. doi:10.1053/j.gastro.2018.06.08330012333
  • Fruman D, Chiu H, Hopkins B, Bagrodia S, Cantley L, Abraham R. The PI3K pathway in human disease. Cell. 2017;170(4):605–635. doi:10.1016/j.cell.2017.07.02928802037
  • McInnes I, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–2337. doi:10.1016/S0140-6736(17)31472-128612747
  • Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–999. doi:10.1016/j.cell.2017.05.01628575679
  • Wang Q, Kalantar-Zadeh K, Kis A, Coleman J, Strano M. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699–712.23132225
  • Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater Weinheim. 2012;24(40):5408–5427.22945550
  • Loh K, Ho D, Chiu G, Leong D, Pastorin G, Chow E. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater Weinheim. 2018;30(47):e1802368.30133035
  • Wu W, Qiu G, Wang Y, Wang R, Ye P. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem Soc Rev. 2018;47:7203–7212.30118130
  • Chimene D, Alge D, Gaharwar A. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater Weinheim. 2015;27(45):7261–7284.26459239
  • Veeramani H, Aruguete D, Monsegue N, et al. Low-temperature green synthesis of multivalent manganese oxide nanowires. ACS Sustain Chem Eng. 2013;1(1070–1074).
  • Layfield RA. Manganese(II): the black sheep of the organometallic family. Chem Soc Rev. 2008;37(6):1098–1107. doi:10.1039/b708850g18497923
  • Fei J, Cui Y, Yan X, et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater. 2008;20:452–456. doi:10.1002/adma.200701231
  • Prasad AS. Green synthesis of nanocrystalline manganese (II, III) oxide. Mater Sci Semicond Process. 2017;71:342–347. doi:10.1016/j.mssp.2017.08.020
  • Hoseinpour V, Ghaemi N. Green synthesis of manganese nanoparticles: applications and future perspective-A review. J Photochem Photobiol B. 2018;189(undefined):234–243. doi:10.1016/j.jphotobiol.2018.10.02230412855
  • Guo S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011;40(5):2644–2672. doi:10.1039/c0cs00079e21283849
  • Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem Soc Rev. 2018;47(16):6267–6295. doi:10.1039/c8cs00268a29971309
  • Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small. 2017;13(5):1602660. doi:10.1002/smll.v13.5
  • Wang H, Zhang J, Hang X, et al. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew Chem Int Ed Engl. 2015;54(4):1195–1199. doi:10.1002/anie.20141003125424379
  • Rani A, Velusamy D, Kim R, et al. Non-volatile ReRAM devices based on self-assembled multilayers of modified graphene oxide 2D nanosheets. Small. 2016;12(44):6167–6174. doi:10.1002/smll.20160227627671374
  • Fan H, Yan G, Zhao Z, et al. A smart photosensitizer-manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew Chem Int Ed Engl. 2016;55(18):5477–5482. doi:10.1002/anie.20151074827010667
  • Lin L, Song J, Song L, et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO-based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed Engl. 2018;57(18):4902–4906. doi:10.1002/anie.20171202729488312
  • Xu Y, Chen X, Chai R, Xing C, Li H, Yin X. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection. Nanoscale. 2016;8(27):13414–13421. doi:10.1039/c6nr03129c27346713
  • Lhuillier E, Pedetti S, Ithurria S, Nadal B, Heuclin H, Dubertret B. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc Chem Res. 2015;48(1):22–30. doi:10.1021/ar500326c25554861
  • Omomo Y, Sasaki T, Wang L, Watanabe M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J Am Chem Soc. 2003;125(12):3568–3575. doi:10.1021/ja021364p12643719
  • Kai K, Yoshida Y, Kageyama H, et al. Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc. 2008;130(47):15938–15943. doi:10.1021/ja804503f18975943
  • Tae E, Lee K, Jeong J, Yoon K. Synthesis of diamond-shape titanate molecular sheets with different sizes and realization of quantum confinement effect during dimensionality reduction from two to zero. J Am Chem Soc. 2008;130(20):6534–6543. doi:10.1021/ja711467g18419121
  • Oaki Y, Imai H. One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew Chem Int Ed Engl. 2007;46(26):4951–4955. doi:10.1002/anie.20070024417516597
  • Deng R, Xie X, Vendrell M, Chang Y, Liu X. Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133(50):20168–20171. doi:10.1021/ja210077422107163
  • Liu Z, Xu K, Sun H, Yin S. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small. 2015;11(18):2182–2191. doi:10.1002/smll.20140222225565035
  • Peng J, Dong M, Ran B, et al. “One-for-All”-type, biodegradable prussian blue/manganese dioxide hybrid nanocrystal for trimodal imaging-guided photothermal therapy and oxygen regulation of breast cancer. ACS Appl Mater Interfaces. 2017;9(16):13875–13886. doi:10.1021/acsami.7b0136528374581
  • Meng X, Lu L, Sun C. Green synthesis of three-dimensional MnO/graphene hydrogel composites as a high-performance electrode material for supercapacitors. ACS Appl Mater Interfaces. 2018;10(19):16474–16481. doi:10.1021/acsami.8b0235429701449
  • Zhang Y, Wang F, Ou P, et al. High efficiency and rapid degradation of bisphenol A by the synergy between adsorption and oxidization on the MnO@nano hollow carbon sphere. J Hazard Mater. 2018;360:223–232. doi:10.1016/j.jhazmat.2018.08.00330119017
  • Lu X, Shen C, Zhang Z, Barrios E, Zhai L. Core-shell composite fibers for high-performance flexible supercapacitor electrodes. ACS Appl Mater Interfaces. 2018;10(4):4041–4049. doi:10.1021/acsami.7b1299729297674
  • Borysiewicz M, Ekielski M, Ogorzałek Z, Wzorek M, Kaczmarski J, Wojciechowski T. Highly transparent supercapacitors based on ZnO/MnO nanostructures. Nanoscale. 2017;9(22):7577–7587. doi:10.1039/c7nr01320e28537626
  • Peng X, Guo Y, Yin Q, et al. Double-exchange effect in two-dimensional MnO nanomaterials. J Am Chem Soc. 2017;139:5242–5248. doi:10.1021/jacs.7b0190328306253
  • Fan H, Zhao Z, Yan G, et al. A smart DNAzyme-MnO(2) nanosystem for efficient gene silencing. Angew Chem Int Ed Engl. 2015;54(16):4801–4805. doi:10.1002/anie.20141141725728966
  • Cheng S, Xu C, Deng S, et al. Interface reconstruction with emerging charge ordering in hexagonal manganite. Sci Adv. 2018;4(5):eaar4298. doi:10.1126/sciadv.aar429829795782
  • Zhang J, Zhao Z, Xia Z, Dai L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol. 2015;10(5):444–452. doi:10.1038/nnano.2015.4825849787
  • Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem. 2011;3(1):79–84. doi:10.1038/nchem.93121160522
  • Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chem Rev. 2013;113(5):3766–3798. doi:10.1021/cr300263a23286380
  • Jia H, Cai Y, Lin J, et al. Heterostructural graphene quantum Dot/MnO nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv Sci (Weinh). 2018;5(5):1700887. doi:10.1002/advs.20170088729876214
  • Zhang JS, Zhang YZ, Tao J, Sun YY, Zhu YN. Preparation and luminescent properties of SiO2-Sr(4)A1(14)O(25): eu2+,Dy3+/light conversion agent phosphor for anti-counterfeiting application. J Mater Sci-Mater El. 2018;29(13):10762–10768. doi:10.1007/s10854-018-9142-9
  • Huang Z, Song Y, Feng D, Sun Z, Sun X, Liu X. High mass loading MnO with hierarchical nanostructures for supercapacitors. ACS Nano. 2018;12(4):3557–3567. doi:10.1021/acsnano.8b0062129579384
  • Zhu S, Li L, Liu J, et al. Structural directed growth of ultrathin parallel birnessite on β-MnO for high-performance asymmetric supercapacitors. ACS Nano. 2018;12(2):1033–1042. doi:10.1021/acsnano.7b0343129365253
  • Zhai T, Sun S, Liu X, Liang C, Wang G, Xia H. Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv Mater Weinheim. 2018;30(12):e1706640.29424076
  • Lee S, Wu L, Poyraz A, et al. Lithiation mechanism of tunnel-structured MnO electrode investigated by in situ transmission electron microscopy. Adv Mater Weinheim. 2017;29(43). doi:10.1002/adma.201703186
  • Shen X, Qian T, Zhou J, Xu N, Yang T, Yan C. Highly flexible full lithium batteries with self-knitted α-MnO2 fabric foam. ACS Appl Mater Interfaces. 2015;7(45):25298–25305.26544650
  • Yue Y, Yang Z, Liu N, et al. A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano. 2016;10(12):11249–11257.28024378
  • Galbiati M, Barraud C, Tatay S, et al. Unveiling self-assembled monolayers’ potential for molecular spintronics: spin transport at high voltage. Adv Mater Weinheim. 2012;24(48):6429–6432.23055410
  • Qiu M, Ren W, Jeong T, et al. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev. 2018;47(15):5588–5601.29882569
  • Li Y, Wang Y, Huang G, Gao J. Cooperativity principles in self-assembled nanomedicine. Chem Rev. 2018;118(11):5359–5391.29693377
  • Tonga G, Jeong Y, Duncan B, et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem. 2015;7(7):597–603.26100809
  • Burton A, Thomson A, Dawson W, Brady R, Woolfson D. Installing hydrolytic activity into a completely de novo protein framework. Nat Chem. 2016;8(9):837–844.27554410
  • Long L, Liu J, Lu K, et al. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. J Nanobiotechnology. 2018;16(1):46–55.29720232
  • Wang H, Li P, Yu D, et al. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018;18(6):3344–3351.29763562
  • Fan K, Xi J, Fan L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1):1440–1450.29650959
  • Feng L, Dong Z, Liang C, et al. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials. 2018;181:81–91.30077139
  • Hu Y, Cheng H, Zhao X, et al. Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano. 2017;11(6):5558–5566.28549217
  • Li J, Cao Y, Hinman S, et al. Efficient label-free chemiluminescent immunosensor based on dual functional cupric oxide nanorods as peroxidase mimics. Biosens Bioelectron. 2018;100:304–311.28942213
  • Nagvenkar A, Gedanken A. Cu0.89Zn0.11O, A new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl Mater Interfaces. 2016;8(34):22301–22308.27503256
  • Qin L, Wang X, Liu Y, Wei H. 2D-metal-organic-framework-nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal Chem. 2018;90(16):9983–9989.30044077
  • Tao Y, Lin Y, Huang Z, Ren J, Qu X. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater Weinheim. 2013;25(18):2594–2599.23418013
  • Hui C, Liu M, Li Y, Brennan J. A paper sensor printed with multifunctional bio/nano materials. Angew Chem Int Ed Engl. 2018;57(17):4549–4553.29504183
  • Ouyang H, Tu X, Fu Z, et al. Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-CN/BiFeO nanocomposites. Biosens Bioelectron. 2018;106:43–49.29414087
  • Wang Z, Dong K, Liu Z, et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-CN hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials. 2017;113:145–157.27815998
  • Yin W, Ma D, Yu J, et al. Synthesis of surface modification oriented nano-sized molybdenum disulfide with high peroxidase-like catalytic activity for H2O2 and cholesterol detection. Chemistry. 2018;24:15868–15878.30091228
  • Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137(19):4552–4558.22900262
  • Liu J, Meng L, Fei Z, Dyson P, Jing X, Liu X. MnO nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron. 2017;90:69–74.27886603
  • Chen F, Bai M, Zhao Y, Cao K, Cao X, Zhao Y. MnO-nanosheet-powered protective janus DNA nanomachines supporting robust RNA imaging. Anal Chem. 2018;90(3):2271–2276. doi:10.1021/acs.analchem.7b0463429295617
  • Li J, Cheng F, Huang H, Li L, Zhu J. Nanomaterial-based activatable imaging probes: from design to biological applications. Chem Soc Rev. 2015;44(21):7855–7880.26214317
  • Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41(6):2283–2307.22143223
  • Baldo M, Thompson M, Forrest S. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature. 2000;403(6771):750–753.10693799
  • Prevo B, Peterman E. Förster resonance energy transfer and kinesin motor proteins. Chem Soc Rev. 2014;43(4):1144–1155.24071719
  • Puchert R, Steiner F, Plechinger G, et al. Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs. Nat Nanotechnol. 2017;12(7):637–641.28396606
  • Pian Q, Yao R, Sinsuebphon N, Intes X. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging. Nat Photonics. 2017;11:411–414.29242714
  • Wu Y, Qiu X, Lindbo S, et al. Quantum dot-based FRET immunoassay for HER2 using ultrasmall affinity proteins. Small. 2018;14(35):e1802266.30079524
  • Salis F, Descalzo A, Benito-Peña E, Moreno-Bondi M, Orellana G. Highly fluorescent magnetic nanobeads with a remarkable stokes shift as labels for enhanced detection in immunoassays. Small. 2018;14(20):e1703810.29665269
  • Wang H, Li C, Liu X, Zhou X, Wang F. Construction of an enzyme-free concatenated DNA circuit for signal amplification and intracellular imaging. Chem Sci. 2018;9(26):5842–5849.30079197
  • Melnychuk N, Klymchenko A. DNA-functionalized dye-loaded polymeric nanoparticles: ultrabright FRET platform for amplified detection of nucleic acids. J Am Chem Soc. 2018;140:10856–10865.30067022
  • Huang D, Huang Z, Xiao H, Wu Z, Tang L, Jiang J. Protein scaffolded DNA tetrads enable efficient delivery and ultrasensitive imaging of miRNA through crosslinking hybridization chain reaction. Chem Sci. 2018;9(21):4892–4897.29910942
  • Qiu X, Guo J, Jin Z, Petreto A, Medintz I, Hildebrandt N. Multiplexed nucleic acid hybridization assays using single-FRET-pair distance-tuning. Small. 2017;13(25):1700332.
  • Teunissen A, Pérez-Medina C, Meijerink A, Mulder W. Investigating supramolecular systems using Förster resonance energy transfer. Chem Soc Rev. 2018;47:7027–7044.30091770
  • Dyla M, Terry D, Kjaergaard M, et al. Dynamics of P-type ATPase transport revealed by single-molecule FRET. Nature. 2017;551(7680):346–351.29144454
  • Ji C, Lu Z, Xu Y, Shen B, Yu S, Shi D. Self-production of oxygen system CaO/MnO @PDA-MB for the photodynamic therapy research and switch-control tumor cell imaging. J Biomed Mater Res Part B Appl Biomater. 2018;106:2544–2552.29345749
  • Qu F, Pei H, Kong R, Zhu S, Xia L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO nanosheets. Talanta. 2017;165:136–142.28153233
  • Wang Y, Jiang K, Zhu J, Zhang L, Lin H. A FRET-based carbon dot-MnO2 nanosheet architecture for glutathione sensing in human whole blood samples. Chem Commun (Camb). 2015;51(64):12748–12751.26165804
  • Yan X, Song Y, Zhu C, et al. Graphene quantum dot-MnO2 nanosheet based optical sensing platform: a sensitive fluorescence “Turn Off-On” nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces. 2016;8(34):21990–21996.27494553
  • Yuan J, Cen Y, Kong X, et al. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces. 2015;7(19):10548–10555.25919577
  • You J, Jones P. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.22789535
  • Kasinski A, Slack F. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–864.22113163
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–874.22094949
  • Honkanen S, Thamm A, Arteaga-Vazquez M, Dolan L. Negative regulation of conserved class I bHLH transcription factors evolved independently among land plants. Elife. 2018;7:e38529.30136925
  • Chen X, Wang L, Huang R, et al. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program. Protein Cell. 2018;10:327–346.30128894
  • Sun Q, Tripathi V, Yoon J, et al. MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res. 2018;46:10405–10416.30102375
  • Cesana M, Guo M, Cacchiarelli D, et al. A CLK3-HMGA2 alternative splicing axis impacts human hematopoietic stem cell molecular identity throughout development. Cell Stem Cell. 2018;22(4):575–588.e577.29625070
  • El Harane N, Kervadec A, Bellamy V, et al. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. Eur Heart J. 2018;39(20):1835–1847.29420830
  • Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–1159. doi:10.1056/NEJMra07206718337604
  • Robertson A, Kim J, Al-Ahmadie H, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171(3):540–556. doi:10.1016/j.cell.2017.09.00728988769
  • Xu R, Rai A, Chen M, Suwakulsiri W, Greening D, Simpson R. Extracellular vesicles in cancer – implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617–638. doi:10.1038/s41571-018-0036-929795272
  • Ozawa T, Kandimalla R, Gao F, et al. A microRNA signature associated with metastasis of T1 colorectal cancers to lymph nodes. Gastroenterology. 2018;154(4):844–848. doi:10.1053/j.gastro.2017.11.27529199088
  • Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(3):548–563. doi:10.1016/j.cell.2017.07.00828753429
  • Hall D, Cost N, Hegde S, et al. TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell. 2014;26(5):738–753. doi:10.1016/j.ccell.2014.09.01525517751
  • Song Y, Yan X, Ostermeyer G, et al. Direct cytosolic MicroRNA detection using single-layer perfluorinated tungsten diselenide nanoplatform. Anal Chem. 2018;90:10369–10376. doi:10.1021/acs.analchem.8b0219330078310
  • Liu C, Chen C, Li S, et al. Target-triggered catalytic hairpin assembly-induced core-satellite nanostructures for high-sensitive “Off-to-On” SERS detection of intracellular microRNA. Anal Chem. 2018;90:10591–10599. doi:10.1021/acs.analchem.8b0281930058321
  • Ye S, Wang M, Wang Z, Zhang N, Luo X. A DNA-linker-DNA bifunctional probe for simultaneous SERS detection of miRNAs via symmetric signal amplification. Chem Commun (Camb). 2018;54(56):7786–7789. doi:10.1039/c8cc02910e29943776
  • Dai W, Zhang J, Meng X, et al. Catalytic hairpin assembly gel assay for multiple and sensitive microRNA detection. Theranostics. 2018;8(10):2646–2656.29774065
  • Nelson P, Baldwin D, Scearce L, Oberholtzer J, Tobias J, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods. 2004;1(2):155–161. doi:10.1038/nmeth71715782179
  • Sun X, Wang H, Jian Y, et al. Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosens Bioelectron. 2018;105:218–225. doi:10.1016/j.bios.2018.01.02529412946
  • Zhang P, Wu X, Yuan R, Chai Y. An “off-on” electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Anal Chem. 2015;87(6):3202–3207. doi:10.1021/ac504455z25679541
  • Kichemazova NV, Bukharova EN, Selivanov NY, Bukharova IA, Karpunina LV. Preparation, properties and potential applications of exopolysaccharides from bacteria of the genera xanthobacter and ancylobater. Appl Biochem Micro+. 2017;53(3):325–330. doi:10.1134/S0003683817030073
  • Li J, Li D, Yuan R, Xiang Y. Biodegradable MnO2 nanosheet-mediated signal amplification in living cells enables sensitive detection of down-regulated intracellular MicroRNA. ACS Appl Mater Interfaces. 2017;9(7):5717–5724. doi:10.1021/acsami.6b1307328124559
  • Yang K, Zeng M, Hu X, Guo B, Zhou J. Layered MnO₂ nanosheet as a label-free nanoplatform for rapid detection of mercury(II). Analyst. 2014;139(18):4445–4448. doi:10.1039/c4an00649f25057513
  • Yuan Y, Wu S, Shu F, Liu Z. An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun (Camb). 2014;50(9):1095–1097. doi:10.1039/c3cc47755j24317151
  • Zhai W, Wang C, Yu P, Wang Y, Mao L. Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem. 2014;86(24):12206–12213. doi:10.1021/ac503215z25393423
  • Qi L, Yan Z, Huo Y, Hai X, Zhang Z. MnO nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag ions. Biosens Bioelectron. 2017;87:566–571. doi:10.1016/j.bios.2016.08.09327614012
  • Tan Q, Zhang R, Kong R, Kong W, Zhao W, Qu F. Detection of glutathione based on MnO nanosheet-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter. Mikrochim Acta. 2017;185(1):44. doi:10.1007/s00604-017-2586-429594599
  • Jalani G, Tam V, Vetrone F, Cerruti M. Seeing, targeting and delivering with upconverting nanoparticles. J Am Chem Soc. 2018;140:10923–10931. doi:10.1021/jacs.8b0397730113851
  • Yang Z, Cheng R, Zhao C, et al. Thermo- and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics. 2018;8(15):4097–4115. doi:10.7150/thno.2619530128039
  • Langton M, Keymeulen F, Ciaccia M, Williams N, Hunter C. Controlled membrane translocation provides a mechanism for signal transduction and amplification. Nat Chem. 2017;9(5):426–430. doi:10.1038/nchem.267828430205
  • Niu D, Li Y, Shi J. Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chem Soc Rev. 2017;46(3):569–585. doi:10.1039/c6cs00495d27805705
  • Yao C, Wang P, Li X, et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv Mater Weinheim. 2016;28(42):9341–9348. doi:10.1002/adma.20150379927578301
  • Datz S, Illes B, Gößl D, Schirnding C, Engelke H, Bein T. Biocompatible crosslinked β-cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale. 2018;10:16284–16292. doi:10.1039/c8nr02462f30128442
  • Zhang D, Yang J, Guan J, et al. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer. Biomater Sci. 2018;6(9):2360–2374. doi:10.1039/c8bm00548f30019051
  • Behroozi F, Abdkhodaie M, Abandansari H, et al. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomater. 2018;76:239–256. doi:10.1016/j.actbio.2018.05.03129928995
  • Yu J, Zhang Y, Kahkoska A, Gu Z. Bioresponsive transcutaneous patches. Curr Opin Biotechnol. 2017;48:28–32. doi:10.1016/j.copbio.2017.03.00128292673
  • Hu J, Chen Y, Li Y, Zhou Z, Cheng Y. A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials. 2017;112:133–140. doi:10.1016/j.biomaterials.2016.10.01527760397
  • Ji H, Dong K, Yan Z, et al. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small. 2016;12(45):6200–6206. doi:10.1002/smll.20160172927690183
  • Timko B, Dvir T, Kohane D. Remotely triggerable drug delivery systems. Adv Mater Weinheim. 2010;22(44):4925–4943. doi:10.1002/adma.20100207220818618
  • Agrawal G, Agrawal R. Functional microgels: recent advances in their biomedical applications. Small. 2018;14:e1801724. doi:10.1002/smll.v14.3930035853
  • He Q, Kiesewetter D, Qu Y, et al. NIR-responsive on-demand release of CO from metal carbonyl-caged graphene oxide nanomedicine. Adv Mater Weinheim. 2015;27(42):6741–6746. doi:10.1002/adma.20150276226401893
  • Lukianova-Hleb E, Ren X, Sawant R, Wu X, Torchilin V, Lapotko D. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat Med. 2014;20(7):778–784. doi:10.1038/nm.348424880615
  • Wang C, Seo S, Kim J, et al. Intravitreal implantable magnetic micropump for on-demand VEGFR-targeted drug delivery. J Control Release. 2018;283:105–112. doi:10.1016/j.jconrel.2018.05.03029852193
  • Andreeva D, Cherepanov P, Avadhut Y, Senker J. Rapidly oscillating microbubbles force development of micro- and mesoporous interfaces and composition gradients in solids. Ultrason Sonochem. 2018;51:439–443. doi:10.1016/j.ultsonch.2018.07.02430072259
  • Nguyen V, Ahmed A, Ramanujan R. Morphing soft magnetic composites. Adv Mater Weinheim. 2012;24(30):4041–4054. doi:10.1002/adma.20110499422760813
  • Zhang D, Wei L, Zhong M, Xiao L, Li H, Wang J. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem Sci. 2018;9(23):5260–5269. doi:10.1039/c8sc01828f29997881
  • Lai W, Rogach A, Wong W. Molecular design of upconversion nanoparticles for gene delivery. Chem Sci. 2017;8(11):7339–7358. doi:10.1039/c7sc02956j29163885
  • Wolfbeis O. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44(14):4743–4768. doi:10.1039/c4cs00392f25620543
  • Zhao P, Zhu Y, Yang X, et al. Multifunctional MnO2 nanosheet-modified Fe3O4@SiO2/NaYF4: yb,Er nanocomposites as novel drug carriers. Dalton Trans. 2014;43(2):451–457. doi:10.1039/c3dt52066h24065169
  • Pykett IL, Newhouse JH, Buonanno FS, et al. Principles of nuclear magnetic resonance imaging. Radiology. 1982;143(1):157–168. doi:10.1148/radiology.143.1.70387637038763
  • Nitz WR. [Magnetic resonance imaging. Sequence acronyms and other abbreviations in MR imaging]. Radiologe. 2003;43(9):745–763.14603892
  • Armstrong P, Keevil SF. Magnetic resonance imaging–1: basic principles of image production. BMJ (Clinical Research Ed). 1991;303(6793):35–40. doi:10.1136/bmj.303.6793.35
  • Terreno E, Castelli D, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110(5):3019–3042. doi:10.1021/cr100025t20415475
  • Zhang S, Merritt M, Woessner D, Lenkinski R, Sherry A. PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res. 2003;36(10):783–790. doi:10.1021/ar020228m14567712
  • Duboc C. Determination and prediction of the magnetic anisotropy of Mn ions. Chem Soc Rev. 2016;45(21):5834–5847. doi:10.1039/c5cs00898k27508279
  • Weinmann H, Brasch R, Press W, Wesbey G. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol. 1984;142(3):619–624. doi:10.2214/ajr.142.3.6196607655
  • Schmidt-Lauber C, Bossaller L, Abujudeh H, et al. Gadolinium-based compounds induce NLRP3-dependent IL-1β production and peritoneal inflammation. Ann Rheum Dis. 2015;74(11):2062–2069. doi:10.1136/annrheumdis-2013-20490024914072
  • Ilatovskaya D, Palygin O, Chubinskiy-Nadezhdin V, et al. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int. 2014;86(3):506–514. doi:10.1038/ki.2014.7124646854
  • Schieren G, Wirtz N, Altmeyer P, Rump L, Weiner S, Kreuter A. Nephrogenic systemic fibrosis–a rapidly progressive disabling disease with limited therapeutic options. J Am Acad Dermatol. 2009;61(5):868–874. doi:10.1016/j.jaad.2009.03.04019836645
  • Runge V. Dechelation (Transmetalation): consequences and safety concerns with the linear gadolinium-based contrast agents, in view of recent health care rulings by the EMA (Europe), FDA (United States), and PMDA (Japan). Invest Radiol. 2018;53:571–578. doi:10.1097/RLI.000000000000050730130320
  • Zhao Z, Fan H, Zhou G, et al. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc. 2014;136(32):11220–11223. doi:10.1021/ja502936425061849
  • Zhang X, Zheng C, Guo S, Li J, Yang H, Chen G. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem. 2014;86(7):3426–3434. doi:10.1021/ac500336f24655132
  • Fan D, Shang C, Gu W, Wang E, Dong S. Introducing ratiometric fluorescence to MnO nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection. ACS Appl Mater Interfaces. 2017;9(31):25870–25877. doi:10.1021/acsami.7b0736928696093
  • Marcel Y, Jewer D, Leblond L, Weech P, Milne R. Lipid peroxidation changes the expression of specific epitopes of apolipoprotein A-I. J Biol Chem. 1989;264(33):19942–19950.2479641
  • Wang D, Lin H, Zhang G, et al. An effectively pH-activated theranostic platform for synchronous magnetic resonance imaging diagnosis and chemotherapy. ACS Appl Mater Interfaces. 2018;10:31114–31123. doi:10.1021/acsami.8b1140830141893
  • Yang Y, Zhu W, Dong Z, et al. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv Mater Weinheim. 2017;29(40):1703588. doi:10.1002/adma.201700681
  • Chen Y, Ye D, Wu M, et al. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater Weinheim. 2014;26(41):7019–7026. doi:10.1002/adma.20140257225156250
  • Shi W, Song B, Shi W, et al. A bimodal phosphorescence-magnetic resonance imaging nanoprobe for glutathione based on MnO2 nanosheet-Ru(II) complex nanoarchitecture. ACS Appl Mater Interfaces. 2018;10:27681–27691. doi:10.1021/acsami.8b0887230058801
  • Peng CH, Cherng JY, Chiou GY, et al. Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. Biomaterials. 2011;32(34):9077–9088. doi:10.1016/j.biomaterials.2011.08.00821890195
  • Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reaction. Angew Chem Int Ed Engl. 2018;58:946–956. doi:10.1002/anie.20180566430048028
  • Liu Y, Jia Q, Guo Q, Wei W, Zhou J. Simultaneously activating highly selective ratiometric MRI and synergistic therapy in response to intratumoral oxidability and acidity. Biomaterials. 2018;180:104–116. doi:10.1016/j.biomaterials.2018.07.02530032045
  • Lin H, Chen Y, Shi J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev. 2018;47(6):1938–1958. doi:10.1039/c7cs00471k29417106
  • Tang Z, Zhang H, Liu Y, et al. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv Mater Weinheim. 2017;29(47):1701683. doi:10.1002/adma.201700681
  • Stockwell B, Friedmann Angeli J, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–285. doi:10.1016/j.cell.2017.09.02128985560
  • Shen Z, Song J, Yung B, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater Weinheim. 2018;30(12):e1704007. doi:10.1002/adma.20170400729356212
  • Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–147. doi:10.1038/nrm373724452471
  • Conrad M, Angeli J, Vandenabeele P, Stockwell B. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016;15(5):348–366. doi:10.1038/nrd.2015.626775689
  • Kim S, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol. 2016;11(11):977–985. doi:10.1038/nnano.2016.16427668796
  • Liu Y, Zhen W, Jin L, et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano. 2018;12(5):4886–4893. doi:10.1021/acsnano.8b0189329727164
  • Fan J, Ye J, Kamphorst J, Shlomi T, Thompson C, Rabinowitz J. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510(7504):298–302. doi:10.1038/nature1323624805240
  • He D, Yang X, He X, et al. A sensitive turn-on fluorescent probe for intracellular imaging of glutathione using single-layer MnO2 nanosheet-quenched fluorescent carbon quantum dots. Chem Commun (Camb). 2015;51(79):14764–14767. doi:10.1039/c5cc05416h26299505
  • Ou M, Huang J, Yang X, et al. Live-cell microRNA imaging through MnO nanosheet-mediated DD-A hybridization chain reaction. Chembiochem. 2018;19(2):147–152. doi:10.1002/cbic.20170057329171151
  • Ou M, Huang J, Yang X, et al. MnO nanosheet mediated “DD-A” FRET binary probes for sensitive detection of intracellular mRNA. Chem Sci. 2017;8(1):668–673. doi:10.1039/c6sc03162e28451215