424
Views
34
CrossRef citations to date
0
Altmetric
Review

Top-down fabrication-based nano/microparticles for molecular imaging and drug delivery

, , &
Pages 6631-6644 | Published online: 19 Aug 2019

References

  • De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine. 2008;3(2):133–149. doi:10.2147/IJN.S59618686775
  • Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–908. doi:10.3892/mco.2014.35625279172
  • Betancourt T, Brannon-Peppas L. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int J Nanomedicine. 2006;1(4):483–495. doi:10.2147/nano.2006.1.4.48317722281
  • Nishiyama N. Nanomedicine: nanocarriers shape up for long life. Nat Nanotechnol. 2007;2(4):203–204. doi:10.1038/nnano.2007.8818654260
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121(1–2):3–9. doi:10.1016/j.jconrel.2007.03.02217544538
  • Glangchai LC, Caldorera-Moore M, Shi L, Roy K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release. 2008;125(3):263–272. doi:10.1016/j.jconrel.2007.10.02118053607
  • Kim J, Lee N, Hyeon T. Recent development of nanoparticles for molecular imaging. Philos T R Soc A. 2017;375(2107). doi:10.1098/rsta.2017.0022
  • Pu KY, Shuhendler AJ, Jokerst JV, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol. 2014;9(3):233–239. doi:10.1038/Nnano.2013.30224463363
  • Cheng Z, Yan XF, Sun XL, Shen BZ, Gambhir SS. Tumor molecular imaging with nanoparticles. Engineering-Prc. 2016;2(1):132–140. doi:10.1016/J.Eng.2016.01.027
  • Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging. 2015;10(5):329–355. doi:10.1002/cmmi.163825882768
  • Culver KS, Shin YJ, Rotz MW, Meade TJ, Hersam MC, Odom TW. Shape-dependent relaxivity of nanoparticle-based T1 magnetic resonance imaging contrast agents. J Phys Chem C Nanomater Interfaces. 2016;120(38):22103–22109. doi:10.1021/acs.jpcc.6b0836228008338
  • Cole LE, Ross RD, Tilley JMR, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine-Uk. 2015;10(2):321–341. doi:10.2217/Nnm.14.171
  • Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine. 2014;9:711–726. doi:10.2147/IJN.S5371724511229
  • Zhang Y, Wang G, Yang L, Wang F, Liu AH. Recent advances in gold nanostructures based biosensing and bioimaging. Coordin Chem Rev. 2018;370:1–21. doi:10.1016/j.ccr.2018.05.005
  • Hwang DK, Dendukuri D, Doyle PS. Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip. 2008;8(10):1640–1647. doi:10.1039/b805176c18813385
  • Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6(1):44 . doi:10.1186/s40169-017-0175-029230567
  • Leifer K, Welch K, Jafri SH, Blom T. Nanoparticle bridges for studying electrical properties of organic molecules. Methods Mol Biol. 2012;906:535–546. doi:10.1007/978-1-61779-953-2_4322791462
  • Scott RW, Wilson OM, Crooks RM. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B. 2005;109(2):692–704. doi:10.1021/jp046966516866429
  • Wetterskog E, Agthe M, Mayence A, et al. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Sci Technol Adv Mat. 2014;15(5). doi:10.1088/1468-6996/15/5/055010
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674–679. doi:10.1016/j.cbpa.2005.10.00516233988
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. Faseb J. 2005;19(3):311–330. doi:10.1096/fj.04-2747rev15746175
  • Hao Y, Huang YX, He YQ, et al. The evaluation of cellular uptake efficiency and tumor-targeting ability of MPEG-PDLLA micelles: effect of particle size. RSC Adv. 2016;6(17):13698–13709. doi:10.1039/c5ra26563k
  • Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. P Natl Acad Sci USA. 2013;110(43):17247–17252. doi:10.1073/pnas.1305000110
  • Zhang P, Xia J, Luo S. Generation of well-defined micro/nanoparticles via advanced manufacturing techniques for therapeutic delivery. Materials (Basel). 2018;11(4). doi:10.3390/ma11040623
  • Lebre F, Sridharan R, Sawkins MJ, Kelly DJ, O’Brien FJ, Lavelle EC. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Sci Rep. 2017;7(1):2922. doi:10.1038/s41598-017-03086-028592868
  • Zaki NM, Nasti A, Tirelli N. Nanocarriers for cytoplasmic delivery: cellular uptake and intracellular fate of chitosan and hyaluronic acid-coated chitosan nanoparticles in a phagocytic cell model. Macromol Biosci. 2011;11(12):1747–1760. doi:10.1002/mabi.20110015621954171
  • Key J, Palange AL, Gentile F, et al. Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano. 2015;9(12):11628–11641. doi:10.1021/acsnano.5b0486626488177
  • Sanchez-Iglesias A, Winckelmans N, Altantzis T, Bals S, Grzelczak M, Liz-Marzan LM. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J Am Chem Soc. 2017;139(1):107–110. doi:10.1021/jacs.6b1214328009166
  • Palomba R, Palange AL, Rizzuti IF, et al. Modulating phagocytic cell sequestration by tailoring nanoconstruct softness. ACS Nano. 2018;12(2):1433–1444. doi:10.1021/acsnano.7b0779729314819
  • Xu QB, Hashimoto M, Dang TT, et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small. 2009;5(13):1575–1581. doi:10.1002/smll.20080185519296563
  • Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5(3):491–502. doi:10.1038/nprot.2009.23420203666
  • Xu R, Zhang G, Mai J, et al. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol. 2016;34(4):414–418. doi:10.1038/nbt.350626974511
  • Xie JW, Ng WJ, Lee LY, Wang CH. Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J Colloid Interf Sci. 2008;317(2):469–476. doi:10.1016/j.jcis.2007.09.082
  • Yao J, Lim LK, Xie JW, Hua JS, Wang CH. Characterization of electrospraying process for polymeric particle fabrication. J Aerosol Sci. 2008;39(11):987–1002. doi:10.1016/j.jaerosci.2008.07.003
  • Yuan S, Lei F, Liu Z, Tong Q, Si T, Xu RX. Coaxial electrospray of curcumin-loaded microparticles for sustained drug release. PLoS One. 2015;10(7):e0132609. doi:10.1371/journal.pone.013260926208167
  • Priyadarshana G, Kottegoda N, Senaratne A, de AA, Karunaratne V. Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. J Nanomater. 2015. doi:10.1155/2015/317312
  • Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, DeSimone JM. Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir. 2010;26(16):13086–13096. doi:10.1021/la903890h20000620
  • Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A. 2009;106(51):21495–21499. doi:10.1073/pnas.090712710620018694
  • Aryal S, Hu CM, Fang RH, et al. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine (Lond). 2013;8(8):1271–1280. doi:10.2217/nnm.12.15323409747
  • Merkel TJ, Jones SW, Herlihy KP, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. P Natl Acad Sci USA. 2011;108(2):586–591. doi:10.1073/pnas.1010013108
  • Lin LH, Peng XL, Mao ZM, et al. Bubble-Pen Lithography. Nano Lett. 2016;16(1):701–708. doi:10.1021/acs.nanolett.5b0452426678845
  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol. 2006;40(14):4353–4359.16903270
  • Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–11618. doi:10.1073/pnas.080176310518697944
  • Unezaki S, Maruyama K, Hosoda J, et al. Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int J Pharm. 1996;144(1):11–17. doi:10.1016/S0378-5173(96)04674-1
  • Roy E, Patra S, Saha S, Kumar D, Madhuri R, Sharma PK. Shape effect on the fabrication of imprinted nanoparticles: comparison between spherical-, rod-, hexagonal-, and flower-shaped nanoparticles. Chem Eng J. 2017;321:195–206. doi:10.1016/j.cej.2017.03.050
  • Hager R, Halilovic A, Burns JR, Schaffler F, Howorka S. Arrays of individual DNA molecules on nanopatterned substrates. Sci Rep. 2017;7:42075. doi:10.1038/srep4207528198806
  • Huanbutta K, Sangnim T, Limmatvapirat S, Nunthanid J, Sriamornsak P. Design and characterization of prednisolone-loaded nanoparticles fabricated by electrohydrodynamic atomization technique. Chem Eng Res Des. 2016;109:816–823. doi:10.1016/j.cherd.2016.03.004
  • Bowerman CJ, Byrne JD, Chu KS, et al. Docetaxel-loaded PLGA nanoparticles improve efficacy in taxane-resistant triple-negative breast cancer. Nano Lett. 2017;17(1):242–248. doi:10.1021/acs.nanolett.6b0397127966988
  • Ishida T, Tachikiri Y, Sako T, Takahashi Y, Yamada S. Structural characterization and plasmonic properties of two-dimensional arrays of hydrophobic large gold nanoparticles fabricated by Langmuir-Blodgett technique. Appl Surf Sci. 2017;404:350–356. doi:10.1016/j.apsusc.2017.01.304
  • Zhan Z, Lei Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano. 2014;8(4):3862–3868. doi:10.1021/nn500713h24611800
  • Zhang HJ, Xu HJ, Wu MH, Zhong YF, Wang DH, Jiao Z. A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J Mater Chem B. 2015;3(31):6480–6489. doi:10.1039/c5tb00634a
  • Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci U S A. 2007;104(29):11901–11904. doi:10.1073/pnas.070532610417620615
  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev. 2005;105(4):1171–1196. doi:10.1021/cr030076o15826012
  • Zhang L, Guan C, Wang Y, Liao J. Highly effective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays. Nanoscale. 2016;8(11):5928–5937. doi:10.1039/c6nr00502k.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi:10.1038/nbt.333026348965