110
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Multifaceted Characterization And In Vitro Assessment Of Polyurethane-Based Electrospun Fibrous Composite For Bone Tissue Engineering

, & ORCID Icon
Pages 8149-8159 | Published online: 08 Oct 2019

References

  • Ma PX, Elisseeff J. Scaffolding in Tissue Engineering. Boca Raton: Taylor & Francis; 2005.
  • Patrick CW, Mikos AG, McIntire LV. Frontiers in Tissue Engineering. 1st ed. Oxford and New York, NY: Pergamon; 1998.
  • Linh NT, Lee BT. Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. J Biomater Appl. 2012;27(3):255–266. doi:10.1177/088532821140193221680612
  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1–19.
  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–2253. doi:10.1016/S0266-3538(03)00178-7
  • Lyu S, Huang C, Yang H, Zhang X. Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthopaedic Res. 2013;31(9):1382–1389. doi:10.1002/jor.22367
  • Bhattarai R, Bachu R, Boddu S, Bhaduri S. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharm. 2019;11(1):5.
  • Rujitanaroj P. Pimpha N and Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polym. 2008;49:4723–4732. doi:10.1016/j.polymer.2008.08.021
  • Bader R, Herzog K, Kao W. A study of diffusion in poly(ethyleneglycol)-gelatin based semi-interpenetrating networks for use in wound healing. Polym Bull. 2009;62:381–389. doi:10.1007/s00289-008-0023-x
  • Barhate RS, Ramakrishna S. Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci. 2007;296:1–8. doi:10.1016/j.memsci.2007.03.038
  • Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomater. 2008;29:1989–2006. doi:10.1016/j.biomaterials.2008.01.011
  • Krishna Rao KSV, Subha MCS, Sairam M, Mallikarjuna NN, Aminabhavi TM. Blend membranes of chitosan and poly(vinyl alcohol) in pervaporation dehydration of isopropanol and tetrahydrofuran. J Appl Polym Sci. 2007;103:1918–1926. doi:10.1002/(ISSN)1097-4628
  • John MJ, Thomas S. Biofibres and biocomposites. Carbohydr Polym. 2008;71:343–364.
  • Polymer Properties Database. Avaiblabe from: https://polymerdatabase.com/polymer%20classes/Polyurethane%20type.html. Accessed 917, 2019.
  • Shen Z, Lu D, Li Q, Zhang Z, Zhu Y. Synthesis and characterization of biodegradable polyurethane for hypopharyngeal tissue engineering. Biomed Res Int. 2015;2015.
  • Unnithan AR, Pichiah PT, Gnanasekaran G, et al. Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloids Surf A Physicochem Eng Asp. 2012;415:454–460. doi:10.1016/j.colsurfa.2012.09.029
  • Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU. Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J Mech Behavior Biomed Mater. 2014;39:95–110. doi:10.1016/j.jmbbm.2014.06.019
  • Jing X, Mi HY, Salick MR, Cordie TM, Peng XF, Turng LS. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications. Mater Sci Eng: C. 2015;49:40–50. doi:10.1016/j.msec.2014.12.060
  • De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regener Biomater. 2018;5(4):197–211. doi:10.1093/rb/rby013
  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.23339648
  • Jaganathan SK, Mani MP, Nageswaran G, Krishnasamy NP, Ayyar M. Single stage electrospun multicomponent scaffold for bone tissue engineering application. Polym Test. 2018;70:244–254. doi:10.1016/j.polymertesting.2018.07.015
  • De Silva RT, Mantilaka MM, Goh KL, Ratnayake SP, Amaratunga GA, de Silva KM. Magnesium oxide nanoparticles reinforced electrospun alginate-based nanofibrous scaffolds with improved physical properties. Int J Biomater. 2017;2017.
  • Rodríguez-Tobías H, Morales G, Ledezma A, Romero J, Grande D. Novel antibacterial electrospun mats based on poly (d, l-lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci. 2014;49(24):8373–8385. doi:10.1007/s10853-014-8547-y
  • Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar F. Essential oils used in aromatherapy: a systemic review. Asian Pac J Trop Biomed. 2015;5(8):601–611. doi:10.1016/j.apjtb.2015.05.007
  • Nikolić M, Marković T, Mojović M, et al. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Indus Crop Prod. 2013;49:561–567. doi:10.1016/j.indcrop.2013.06.002
  • Facciola S. Cornucopia II: A Source Book of Edible Plants. 2nd ed. UK: Kampong Publications; 1998.
  • Genders R. Scented Flora Of the World. R. Halle Illustrated. Pennsylvania State University; 1977.
  • Wang X, Zhu J, Yin L, et al. Evaluation of the morphology and osteogenic potential of titania-based electrospun nanofibers. J Nanomater. 2012;2012:20. doi:10.1155/2012/959578
  • Adhikari SP, Pant HR, Mousa HM, et al. Synthesis of high porous electrospun hollow TiO2 nanofibers for bone tissue engineering application. J Indus Eng Chem. 2016;35:75–82. doi:10.1016/j.jiec.2015.12.004
  • Balaji A, Jaganathan SK, Ismail AF, Rajasekar R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and carica papaya extract for the management of burn injuries. Int J Nanomedicine. 2016;11:4339. doi:10.2147/IJN.S11226527621626
  • Mani MP, Jaganathan SK. Fabrication and characterization of electrospun polyurethane blended with dietary grapes for skin tissue engineering. J Indus Text. 2019;1528083719840628.
  • Jaganathan SK, Mani MP, Ayyar M, Krishnasamy NP, Nageswaran G. Blood compatibility and physicochemical assessment of novel nanocomposite comprising polyurethane and dietary carotino oil for cardiac tissue engineering applications. J Appl Polym Sci. 2018;135(3):45691. doi:10.1002/app.45691
  • Manikandan A, Mani MP, Jaganathan SK, Rajasekar R. Morphological, thermal, and blood‐compatible properties of electrospun nanocomposites for tissue engineering application. Polym Compos. 2018;39:E132–E139. doi:10.1002/pc.v39.S1
  • Theivasanthi T, Alagar M. Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight. 2013 arXiv:1307.1091.
  • Jaganathan SK, Mani MP. Electrospun polyurethane nanofibrous composite impregnated with metallic copper for wound-healing application. 3 Biotech. 2018;8(8):327. doi:10.1007/s13205-018-1356-2
  • Jaganathan SK, Mani MP, Palaniappan SK, Rathanasamy R. Fabrication and characterisation of nanofibrous polyurethane scaffold incorporated with corn and neem oil using single stage electrospinning technique for bone tissue engineering applications. J Polym Res. 2018;25(7):146. doi:10.1007/s10965-018-1543-1
  • Kim HH, Kim MJ, Ryu SJ, Ki CS, Park YH. Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly (ε-caprolactone) mat. Fiber Polym. 2016;17(7):1033–1042. doi:10.1007/s12221-016-6350-x
  • Ribeiro C, Sencadas V, Areias AC, Gama FM, Lanceros‐Méndez S. Surface roughness dependent osteoblast and fibroblast response on poly (l‐lactide) films and electrospun membranes. J Biomed Mater Res Part A. 2015;103(7):2260–2268. doi:10.1002/jbm.a.35367
  • Mani MP, Jaganathan SK, Khudzari AZ, Rathanasamy R, Prabhakaran P. Single-stage electrospun innovative combination of polyurethane and neem oil: synthesis, characterization and appraisal of blood compatibility. J Bioact Compat Polym. 2018;33(6):573–584. doi:10.1177/0883911518792288
  • Miguel SP, Ribeiro MP, Coutinho P, Correia IJ. Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers. 2017;9(5):Article 183. doi:10.3390/polym9120669
  • Chou SH, Don TM, Lai WC, Cheng LP. Formation of microporous poly (hydroxybutyric acid) membranes for culture of osteoblast and fibroblast. Polym Adv Technol. 2009;20(12):1082–1090. doi:10.1002/pat.1366
  • Anselme K, Ploux L, Ponche A. Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol. 2010;24(5):831–852. doi:10.1163/016942409X12598231568186
  • Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7(1):55–71. doi:10.1089/10763270030000329711224924
  • Periosteum. Available from: https://en.wikipedia.org/wiki/Periosteum. Accessed 6th8 2019.