149
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Aptamer-Antibody Complementation On Multiwalled Carbon Nanotube-Gold Transduced Dielectrode Surfaces To Detect Pandemic Swine Influenza Virus

ORCID Icon, ORCID Icon &
Pages 8469-8481 | Published online: 25 Oct 2019

References

  • Kumar PKR. Monitoring intact viruses using aptamers. Biosensors. 2016;6(3):1–16.
  • Kumar PKR. Systematic screening of viral entry inhibitors using surface plasmon resonance. Rev med virol. 2017;29(August):1–12. doi:10.1152/ajplegacy.1975.229.3.754
  • Subbarao K, Katz J. Avian influenza viruses infecting humans. Cell Mol Life Sci. 2000;57(12):1770–1784. doi:10.1007/PL0000065711130181
  • Matrosovich MN, Krauss S, Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001;281(2):156–162. doi:10.1006/viro.2000.079911277689
  • Skehel JJ, Wiley DC. Influenza haemagglutinin. Vaccine. 2002;20:S51–4. doi: 10.1016/S0264-410X(02)00131-7.
  • Liao HY, Hsu CH, Wang SC, et al. Differential receptor binding affinities of influenza hemagglutinins on glycan arrays. J Am Chem Soc. 2010;132(42):14849–14856. doi:10.1021/ja104657b20882975
  • Gopinath SCB, Kumar PKR. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater. 2013;9(11):8932–8941. doi: 10.1016/j.actbio.2013.06.016.23791676
  • Nitsche A, Kurth A, Dunkhorst A, et al. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 2007;7:48. doi:10.1186/1472-6750-7-4817697378
  • Bruno J. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules. 2015;20(4):6866–6887. doi: 10.3390/molecules20046866.25913927
  • Zhao L, Huang Y, Dong Y, et al. Aptamers and aptasensors for highly specific recognition and sensitive detection of marine biotoxins: recent advances and perspectives. Toxins (Basel). 2018;10(11):427. doi:10.3390/toxins10010035
  • Kang Y, Feng KJ, Chen JW, Jiang JH, Shen GL, Yu RQ. Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry. 2008;73(1):76–81. doi:10.1016/j.bioelechem.2008.04.02418539098
  • Du F, Zhu L, Dai L. Carbon nanotube-based electrochemical biosensors. Biosens Based Nanomater Nanodevices. 2017;17(1):7–14.
  • Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv. 2011;29(2):169–188. doi:10.1016/j.biotechadv.2010.10.00221034805
  • Gopinath SCB, Perumal V, Kumaresan R, et al. Nanogapped impedimetric immunosensor for the detection of 16Â kDa heat shock protein against Mycobacterium tuberculosis. Microchim Acta. 2016;183(10):2697–2703.
  • Letchumanan I, Md Arshad MK, Balakrishnan SR, Gopinath SCB. Gold-nanorod enhances dielectric voltammetry detection of c-reactive protein: a predictive strategy for cardiac failure. Biosens Bioelectron. 2019;130(October 2018):40–47. doi:10.1016/j.bios.2019.01.042.30716591
  • Gopinath SCB, Misono TS, Kawasaki K, et al. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion Printed in Great Britain. J Gener Virol. 2007;87(3):479–487.
  • Gopinath SCB, Hayashi K, Kumar PKR. Aptamer that binds to the gD protein of herpes simplex Virus 1 and efficiently inhibits viral entry. J Virol. 2012;86:6732–6744. doi:10.1128/JVI.00377-1222514343
  • Gopinath SCB, Misono TS, Kawasaki K, et al. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J Gen Virol. 2006;87(2006):479–487. doi:10.1099/vir.0.81508-016476969
  • Gopinath SCB, Awazu K, Fujimaki M. Detection of influenza viruses by a waveguide-mode sensor. Anal Methods. 2010;2(12):1880.
  • Xu R, McBride R, Nycholat CM, Paulson JC, Wilson IA. Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J Virol. 2012;86(2):982–990. doi:10.1128/JVI.06322-1122072785
  • Williams S, Davies P, Bowen J, Allender C. Controlling the nanoscale patterning of AuNPs on silicon surfaces. Nanomaterials. 2013;3(1):192–203. doi: 10.3390/nano3010192.28348330
  • Castillo F, Perez E, de la Rosa E. Adsorption of gold nanoparticles on silicon substrate and their application in Surface Enhancement Raman Scattering. Rev Mex Fis. 2011;57(2):61–65.
  • Vashist SK, Marion Schneider E, Lam E, Hrapovic S, Luong JHT. One-step antibody immobilization-based rapid and highly-sensitive sandwich ELISA procedure for potential in vitro diagnostics. Sci Rep. 2014;4:4407. doi: 10.1038/srep04407.24638258
  • Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir. 2013;29:15107–15115. doi:10.1021/la402728324200095
  • Lakshmipriya T, Horiguchi Y, Nagasaki Y. Co-immobilized poly (ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst. 2014;139(16):3977–3985. doi: 10.1039/c4an00168k.24922332
  • Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K, Horiguchi Y, Nagasaki Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst. 2013;138:2863–2870. doi: 10.1039/c3an00298e.23577343
  • Vashist SK. Graphene-based immunoassay for human lipocalin-2. Anal Biochem. 2014;446:96–101. doi: 10.1016/j.ab.2013.10.022.24161611
  • Nidzworski D, Siuzdak K, Niedziałkowski P, et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep. 2017;7:15707. doi:10.1038/s41598-017-15806-729146948
  • Kukushkin VI, Ivanov NM, Novoseltseva AA, et al. Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One. 2019;14(4):e0216247. doi:10.1371/journal.pone.021624731022287
  • Lee N, Wang C, Park J. User-friendly point-of-care detection of influenza A (H1N1) virus using light guide in three-dimensional photonic crystal. RSC Adv. 2018;8:22991–22997. doi:10.1039/C8RA02596G
  • Horiguchi Y, Goda T, Matsumoto A, Takeuchi H, Yamaoka S, Miyahara Y. Direct and label-free influenza virus detection based on multisite binding to sialic acid receptors. Biosens Bioelectron. 2017;92:234–240. doi:10.1016/j.bios.2017.02.02328222368
  • Cheng C, Cui H, Wu J, Eda S. A PCR-free point-of-care capacitive immunoassay for influenza A virus. Microchim Acta. 2017;184:1649–1657. doi:10.1007/s00604-017-2140-4
  • Nidzworski D, Pranszke P, Grudniewska M, Krol E, Gromadzka B. Universal biosensor for detection of influenza virus. Biosens Bioelectron. 2014;59:239–242. doi:10.1016/j.bios.2014.03.05024732601
  • Ye WW, Tsang MK, Liu X, Yang M, Hao J. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small. 2014;10(12):2390–2397. doi:10.1002/smll.20130376624599581
  • Loo JFC, Wang SS, Peng F, et al. A non-PCR SPR platform using RNase H to detect MicroRNA 29a-3p from throat swabs of human subjects with influenza A virus H1N1 infection. Analyst. 2015;140(13):4566–4575. doi:10.1039/c5an00679a26000345
  • Yamanaka K, Saito M, Kondoh K, et al. Rapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor. Analyst. 2011;136:2064–2068. doi:10.1039/c1an15066a21442100