223
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Nitroxide-Modified Protein-Incorporated Nanoflowers with Dual Enzyme-Like Activities

ORCID Icon, , ORCID Icon, , &
Pages 263-273 | Published online: 15 Jan 2020

References

  • Rong Y, Doctrow SR, Tocco G, Baudry M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc Natl Acad Sci. 1999;96(17):9897–9902. doi:10.1073/pnas.96.17.989710449791
  • Melov S, Ravenscroft J, Malik S, et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science. 2000;289(5484):1567–1569. doi:10.1126/science.289.5484.156710968795
  • Baker K, Marcus CB, Huffman K, Kruk H, Malfroy B, Doctrow SR. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exp Ther. 1998;284(1):215–221.9435181
  • Jung C, Rong Y, Doctrow S, Baudry M, Malfroy B, Xu Z. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett. 2001;304(3):157–160. doi:10.1016/S0304-3940(01)01784-011343826
  • Baleizao C, Garcia H. Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem Rev. 2006;106(9):3987–4043. doi:10.1021/cr050973n16967927
  • Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46(16):2736–2738. doi:10.1039/B922024K
  • Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G. A redox modulatory Mn3O4 nanozyme with multi‐enzyme activity provides efficient cytoprotection to human cells in a parkinson’s disease model. Angew Chem Int Ed. 2017;56(45):14267–14271. doi:10.1002/anie.201708573
  • Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radical Res. 2007;41(6):615–626. doi:10.1080/1071576060116967917516233
  • Sapsford KE, Algar WR, Berti L, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev. 2013;113(3):1904–2074. doi:10.1021/cr300143v23432378
  • Zhou Y, Liu B, Yang R, Liu J. Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjugate Chem. 2017;28(12):2903–2909. doi:10.1021/acs.bioconjchem.7b00673
  • Ge J, Lei J, Zare RN. Protein-inorganic hybrid nanoflowers. Nat Nanotechnol. 2012;7(7):428–432. doi:10.1038/nnano.2012.8022659609
  • Wu Z, Li X, Li F, et al. Enantioselective transesterification of (R, S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Adv. 2014;4(64):33998–34002. doi:10.1039/C4RA04431B
  • Wu Z-F, Wang Z, Zhang Y, et al. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Sci Rep. 2016;6:22412. doi:10.1038/srep2241226926099
  • Krishna MC, Samuni A, Taira J, Goldstein S, Mitchell JB, Russo A. Stimulation by nitroxides of catalase-like activity of hemeproteins kinetics and mechanism. J Biol Chem. 1996;271(42):26018–26025. doi:10.1074/jbc.271.42.260188824241
  • Kuppusamy P, Wang P, Zweier JL, et al. Electron paramagnetic resonance imaging of rat heart with nitroxide and polynitroxyl-albumin. Biochemistry. 1996;35(22):7051–7057. doi:10.1021/bi952857s8679530
  • Li H, Ma L, Hsia CJ, Zweier JL, Kuppusamy P. Polynitroxyl-albumin (PNA) enhances myocardial infarction therapeutic effect of tempol in rat hearts subjected to regional ischemia-reperfusion. Free Radical Biol Med. 2002;32(8):712–719. doi:10.1016/S0891-5849(02)00762-111937297
  • Zhang S, Li H, Ma L, et al. Polynitroxyl-albumin (PNA) plus tempol attenuate lung capillary leak elicited by prolonged intestinal ischemia and reperfusion. Free Radical Biol Med. 2000;29(1):42–50. doi:10.1016/S0891-5849(00)00295-110962204
  • Ma L, Wang X-J. Characteristic emission in glutaraldehyde polymerized hemoglobin. J Lumin. 2011;131(3):461–464. doi:10.1016/j.jlumin.2010.10.029
  • Cao S, Zhang J, Ma L, Hsia CJ, Koehler RC. Transfusion of polynitroxylated pegylated hemoglobin stabilizes pial arterial dilation and decreases infarct volume after transient middle cerebral artery occlusion. J Am Heart Assoc. 2017;6(9):e006505. doi:10.1161/JAHA.117.00650528899897
  • Hsia CJC, Ma L. A hemoglobin‐based multifunctional therapeutic: polynitroxylated pegylated hemoglobin. Artif Organs. 2012;36(2):215–220. doi:10.1111/aor.2012.36.issue-221955160
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–254. doi:10.1016/0003-2697(76)90527-3942051
  • Lartillot S, Kedziora P, Athias A. Purification and characterization of a new fungal catalase. Prep Biochem. 1988;18(3):241–246. doi:10.1080/003274888080625263237642
  • Escobar L, Salvador C, Contreras M, Escamilla JE. On the application of the Clark oxygen electrode to the study of enzyme kinetics in apolar solvents: the catalase reaction. Anal Biochem. 1990;184(1):139–144. doi:10.1016/0003-2697(90)90026-61690958
  • Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56(3):658–666. doi:10.1021/ja01318a036
  • Trnka J, Blaikie FH, Logan A, Smith RAJ, Murphy MP. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radical Res. 2009;43(1):4–12. doi:10.1080/1071576080258218319058062
  • Stadtman E, Berlett B, Chock P. Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc Natl Acad Sci. 1990;87(1):384–388. doi:10.1073/pnas.87.1.3842296593
  • Cho IS, Kim DW, Lee S, et al. Synthesis of Cu2PO4OH hierarchical superstructures with photocatalytic activity in visible light. Adv Funct Mater. 2008;18(15):2154–2162. doi:10.1002/adfm.200800167
  • Yang W-J, Griffiths PR, Byler DM, Susi H. Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self-deconvolution. Appl Spectrosc. 1985;39(2):282–287. doi:10.1366/0003702854248917
  • Tukel SS, Alptekin O. Immobilization and kinetics of catalase onto magnesium silicate. Process Biochem. 2004;39(12):2149–2155. doi:10.1016/j.procbio.2003.11.010
  • Murthy MRN, Reid TJ, Sicignano A, Tanaka N, Rossmann MG. Structure of beef liver catalase. J Mol Biol. 1981;152(2):465–499. doi:10.1016/0022-2836(81)90254-07328661
  • Fita I, Rossmann MG. The active center of catalase. J Mol Biol. 1985;185(1):21–37. doi:10.1016/0022-2836(85)90180-94046038
  • Neupane BP, Chaudhary D, Paudel S, et al. Himalayan honey loaded iron oxide nanoparticles: synthesis, characterization and study of antioxidant and antimicrobial activities. Int J Nanomed. 2019;14:3533. doi:10.2147/IJN.S196671
  • Yang M, Zhang M, Nakajima H, Yudasaka M, Iijima S, Okazaki T. Time-dependent degradation of carbon nanotubes correlates with decreased reactive oxygen species generation in macrophages. Int J Nanomed. 2019;14:2797. doi:10.2147/IJN.S199187
  • Khorrami MB, Sadeghnia HR, Pasdar A, et al. antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats. Int J Nanomed. 2019;14:2915. doi:10.2147/IJN.S194192
  • Xu C, Qiao L, Ma L, et al. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. Int J Nanomed. 2019;14:4491–4502. doi:10.2147/IJN.S199193
  • Wen T, Yang A, Piao L, et al. Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Int J Nanomed. 2019;14:4475–4489. doi:10.2147/IJN.S208225
  • Pei Y, Cui F, Du X, et al. Antioxidative nanofullerol inhibits macrophage activation and development of osteoarthritis in rats. Int J Nanomed. 2019;14:4145–4155. doi:10.2147/IJN.S202466