3,063
Views
84
CrossRef citations to date
0
Altmetric
Review

Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 2439-2483 | Published online: 15 Apr 2020

References

  • Krishnaiah YS. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J Bioequivalence Bioavailab. 2010;2(2):28–36. doi:10.4172/jbb.1000027
  • Teeranachaideekul V, Müller RH, Junyaprasert VB. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC) effects of formulation parameters on physicochemical stability. Int J Pharm. 2007;340(1–2):198–206. doi:10.1016/j.ijpharm.2007.03.02217482778
  • Siddiqui IA, Sanna V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol Nutr Food Res. 2016;60(6):1330–1341. doi:10.1002/mnfr.20160003526935239
  • Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013;334:133–141. doi:10.1016/j.canlet.2013.02.03223435377
  • Adhami VM, Mukhtar H. Human cancer chemoprevention: hurdles and challenges. Top Curr Chem. 2013;329:203–220.22790416
  • Bharali DJ, Siddiqui IA, Adhami VM, et al. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancers. 2011;3(4):4024–4045. doi:10.3390/cancers304402424213123
  • Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25:363–376. doi:10.1016/j.jnutbio.2013.10.00224406273
  • ud Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017;12:7291–7309. doi:10.2147/IJN.S146315
  • Saraf A. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680–689. doi:10.1016/j.fitote.2010.05.00120471457
  • Ni S. Nanoparticles carrying natural product for drug delivery. J Drug Delivery Ther. 2017;7(3):73–75. doi:10.22270/jddt.v7i3.1425
  • Nagalingam A. Drug delivery aspects of herbal medicines. Jpn Kampo Med Treat Common Dis Focus Inflammation. 2017;17:143.
  • Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci. 2015;221:60–76. doi:10.1016/j.cis.2015.04.00625999266
  • Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25(2):219–234. doi:10.1016/j.jfda.2017.02.00128911663
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68(3):701–787.27363439
  • Luo CF, Yuan M, Chen MS, et al. Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int J Pharm. 2011;410:138–144. doi:10.1016/j.ijpharm.2011.02.06421392565
  • Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 2014;18:56–61. doi:10.1016/j.chemphyslip.2014.03.006
  • Luo CF, Hou N, Tian J, et al. Metabolic profile of puerarin in rats after intragastric administration of puerarin solid lipid nanoparticles. Int J Nanomed. 2013;8:933–940. doi:10.2147/IJN.S39349
  • Zhang C, Gu C, Peng F, et al. Preparation and optimization of triptolide-loaded solid lipid nanoparticles for oral delivery with reduced gastric irritation. Molecules. 2013;18(18):13340–13356. doi:10.3390/molecules18111334024172242
  • Dang YJ, Zhu CY. Oral bioavailability of cantharidin-loaded solid lipid nanoparticles. Chin Med. 2013;8:1–6. doi:10.1186/1749-8546-8-123298453
  • Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine. 2013;9(4):492–503. doi:10.1016/j.nano.2012.10.00323117045
  • Li J, Guo X, Liu Z, et al. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies. Drug Dev Ind Pharm. 2014;40:980–987. doi:10.3109/03639045.2013.79558223662696
  • Rahman HS, Rasedee A, How CW, et al. Zerumbone-loaded nanostructured lipid carriers: preparation, characterization, and antileukemic effect. Int J Nanomed. 2013;8:2769–2781. doi:10.2147/IJN.S45313
  • Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139–151. doi:10.1016/j.ejps.2012.05.01022664358
  • Muhammad HS. Anti-Leukemic Effects of Zerumbone Nanoparticle on Human Jurkat T Lymphoblastoid Cell Lines In vitro and Murine Leukemic WEHI-3B Model In vivo [Doctoral dissertation]. Universiti Putra Malaysia; 2014.
  • Shangguan M, Feng Q, Zhao J, et al. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. Food Chem Toxicol. 2012;50:1460–1467.22285414
  • Nahr FK, Ghanbarzadeh B, Hamishehkar H, Kafil HS. Food grade nanostructured lipid carrier for cardamom essential oil: preparation, characterization and antimicrobial activity. J Funct Foods. 2018;40:1–8. doi:10.1016/j.jff.2017.09.028
  • Rahman HS, Rasedee A, Abdul AB, et al. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line. Int J Nanomed. 2014;9:527–538. doi:10.2147/IJN.S54346
  • Ng WK, Saiful Yazan L, Yap LH, et al. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). Biomed Res Int. 2015;2015:1–10.
  • Ong YS, Saiful Yazan L, Ng WK, et al. Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine. 2018;13(13):1567–1582. doi:10.2217/nnm-2017-032230028248
  • Nordin N, Yeap SK, Zamberi NR, et al. Characterization and toxicity of citral incorporated with nanostructured lipid carrier. Peer J. 2018;6:e3916. doi:10.7717/peerj.391629312812
  • Mohamad NE, Abu N, Rahman HS, et al. Nanostructured lipid carrier improved in vivo anti-tumor and immunomodulatory effect of zerumbone in 4T1 challenged mice. RSC Adv. 2015;5(28):22066–22074. doi:10.1039/C5RA00144G
  • Hosseinpour M, Abdul AB, Rahman HS, et al. Comparison of apoptotic inducing effect of zerumbone and zerumbone-loaded nanostructured lipid carrier on human mammary adenocarcinoma MDA-MB-231 cell line. J Nanomater. 2014;2014:1–10. doi:10.1155/2014/742738
  • Rahman HS, Rasedee A, How CW, et al. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model. Int J Nanomed. 2015;10:1649–1666. doi:10.2147/IJN.S67113
  • Rahman HS, Rasedee A, Othman HH, et al. Acute toxicity study of zerumbone-loaded nanostructured lipid carrier on BALB/c mice model. Biomed Res Int. 2014;2014:1–15.
  • Jia Ning F, Gayathri TS, Rahman HS, et al. Zerumbone-loaded nanostructured lipid carrier induces apoptosis of canine mammary adenocarcinoma cells. Biomed Res Int. 2018;2018:1–18.
  • Nathaniel C, Elaine-Lee YL, Yee BC, et al. Zerumbone-loaded nanostructured lipid carrier induces apoptosis in human colorectal adenocarcinoma (Caco-2) cell line. Nanosci Nanotechnol Lett. 2016;8(4):294–302. doi:10.1166/nnl.2016.2136
  • Shi F, Yang G, Ren J, Guo T, Du Y, Feng NP. Formulation design, preparation, and in vitro and in vivo characterizations of β-elemene-loaded nanostructured lipid carriers. Int J Nanomed. 2013;8:2533–2541. doi:10.2147/IJN.S46578
  • Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–127. doi:10.1007/s13205-014-0214-0
  • Mahato R. Nanoemulsion as targeted drug delivery system for cancer therapeutics. J Pharm Sci Pharmacol. 2017;3(2):83–97. doi:10.1166/jpsp.2017.1082
  • Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011;2(05):626–639. doi:10.4236/jbnb.2011.225075
  • Chhabra G, Chuttani K, Mishra AK, Pathak K. Design and development of nanoemulsion drug delivery system of amlodipine besilate for improvement of oral bioavailability. Drug Dev Ind Pharm. 2011;37(8):907–916. doi:10.3109/03639045.2010.55005021401341
  • Topuz OK, Özvural EB, Zhao Q, Huang Q, Chikindas M, Gölükçü M. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of food-borne pathogens. Food Chem. 2016;203:117–123. doi:10.1016/j.foodchem.2016.02.05126948596
  • Zhang S, Zhang M, Fang Z, Liu Y. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. LWT-Food Sci Tech. 2017;75:316–322. doi:10.1016/j.lwt.2016.08.046
  • Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv. 2012;9(5):585–598. doi:10.1517/17425247.2012.66852322512597
  • Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv. 2014;21(2):148–154. doi:10.3109/10717544.2013.83801424128122
  • Khani S, Keyhanfar F, Amani A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv. 2016;23(6):2035–2043. doi:10.3109/10717544.2015.108859726406153
  • Patel RP, Joshi JR. An overview on nanoemulsion: a novel approach. Int J Pharm Sci Res. 2012;3(12):4640–4650.
  • Wang X, Wang YW, Huang Q Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. Micro/Nanoencapsulation of Active Food Ingredients, ACS Symposium Series; 2009;1007:198–212.
  • Mezadri H. Development of Nanoemulsions Containing Extracts of Fruits of Syagrus Romanzoffiana (Cham.) Glassman and Phytochemical Study of These Extracts [Dissertation] Ouro Preto, Brazil: Faculdade de Ciências Farmacêuticas, UFOP; 2010 Portuguese.
  • Zeng Z, Zhou G, Wang X, et al. Preparation, characterization and relative bioavailability of oral elemene o/w microemulsion. Int J Nanomed. 2010;7:567–572. doi:10.2147/IJN.S12485
  • Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem. 2013;20:338e344. doi:10.1016/j.ultsonch.2012.08.01022954686
  • Bonifácio BV, Da Silva PB, dos Santos Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomed. 2014;9:1–15.
  • Censi R, Martena V, Hoti E, Malaj L, Di Martino P. Permeation and skin retention of quercetin from microemulsions containing Transcutol® P. Drug Dev Ind Pharm. 2012;38(9):1128–1133. doi:10.3109/03639045.2011.64156422188183
  • Chen Y, Lin X, Park H, Greever R. Study of artemisin in nanocapsules as anticancer drug delivery system. Nanomed. 2009;5(3):316–322. doi:10.1016/j.nano.2008.12.005
  • Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–142. doi:10.1016/j.ijpharm.2009.10.01819825408
  • Abellan-Pose R, Teijeiro-Valiño C, Santander-Ortega MJ, et al. Polyaminoacid nanocapsules for drug delivery to the lymphatic system: effect of the particle size. Int J Pharm. 2016;509(1–2):107–117. doi:10.1016/j.ijpharm.2016.05.03427210735
  • Zhao YQ, Wang LP, Ma C, Zhao K, Liu Y, Feng NP. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers. Int J Nanomed. 2013;8:4169–4181. doi:10.2147/IJN.S50557
  • Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm J. 2014;22(3):219–222. doi:10.1016/j.jsps.2013.12.00225061407
  • Christofoli M, Costa EC, Bicalho KU, et al. Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in bemisia tabaci populations. Ind Crops Prod. 2015;70:301–308. doi:10.1016/j.indcrop.2015.03.025
  • Souza CF, Baldissera MD, Cossetin LF, Dalla Lana DF, Monteiro SG. Achyrocline satureioides essential oil loaded in nanocapsules ameliorate the antioxidant/oxidant status in heart of rats infected with Trypanosoma evansi. Microb Pathog. 2017;105:30–36. doi:10.1016/j.micpath.2017.02.00528185949
  • Rivas CJ, Tarhini M, Badri W, et al. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm. 2017;532(1):66–81. doi:10.1016/j.ijpharm.2017.08.06428801107
  • Sneha S, Swarnlata S, Chanchal DK, Shailendra S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci. 2013;16(13):601–609. doi:10.3923/pjbs.2013.601.60924505982
  • Adhikari P, Pal P, Das AK, Ray S, Bhattacharjee A, Mazumder B. Nano lipid-drug conjugate: an integrated review. Int J Pharm. 2017;529(1–2):629–641. doi:10.1016/j.ijpharm.2017.07.03928723407
  • Saracibar BL, Mendoza AEH, Guada M, Vieitez CD, Prieto MJB. Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin Drug Deliv. 2012;9(10):1245–1261. doi:10.1517/17425247.2012.71792822950878
  • Neupane YB, Sabir MD, Ahmad N, Ali M, Kohli K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology. 2013;24(41):1–11. doi:10.1088/0957-4484/24/41/415102
  • Guo W, Li A, Jia Z, Yuan Y, Dai H, Li H. Transferrin modied PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur J Pharmacol. 2013;718:41–47. doi:10.1016/j.ejphar.2013.09.03424070814
  • Shen J, Zhang D, Zhao Z, et al. Synthesis, characterization, in vitro and in vivo evaluation of PEGylated oridonin conjugates. Int J Pharm. 2013;456:80–86. doi:10.1016/j.ijpharm.2013.08.01423973480
  • Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–163. doi:10.1016/j.ijpharm.2006.09.02517112692
  • Singh M, Bhatnagar P, Mishra S, et al. PLGA encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing ehrlich ascites carcinoma. Int J Nanomed. 2015;10:6789–6809. doi:10.2147/IJN.S79489
  • Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol-loaded nanoparticles based on poly(epsiloncaprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm. 2013;10:3871–3881. doi:10.1021/mp400342f23968375
  • Pan M, Li W, Yang J, et al. Plumbagin-loaded aptamer-targeted poly D, L-lactic-co-glycolic acid-b-polyethylene glycol nanoparticles for prostate cancer therapy. Medicine. 2017;96(30):e7405. doi:10.1097/MD.000000000000740528746182
  • Ganesan P, Narayanasamy D. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm. 2017;6:37–56. doi:10.1016/j.scp.2017.07.002
  • Robson AL, Dastoor PC, Flynn J, et al. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol. 2018;9(80):1–8. doi:10.3389/fphar.2018.0008029387012
  • Lee WH, Loo CY, Young PM, Traini D, Rohanizadeh R. The development and achievement of polymeric nanoparticles for cancer drug treatment. Part Technol Delivery Ther. 2017;25–82.
  • Song Z, Lin Y, Zhang X, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomed. 2017;12:1941–1958. doi:10.2147/IJN.S125573
  • Hong SS, Kim SH, Lim SJ. Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes. Int J Pharm. 2015;483(1–2):142–150. doi:10.1016/j.ijpharm.2015.02.01325667981
  • Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK. Evaluation of nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol. 2008;32:1119–1123.18425340
  • Hong SS, Choi JY, Kim JO, Lee MK, Kim SH, Lim SJ. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int J Nanomed. 2016;11:4465–4477. doi:10.2147/IJN.S113723
  • Kannan V, Balabathula P, Divi MK, Thoma LA, Wood GC. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes. J Liposome Res. 2015;25(4):308–315. doi:10.3109/08982104.2014.99567125541107
  • Li N, Feng L, Tan Y, Xiang Y, Zhang R, Yang M. Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after iv administration in rats. Molecules. 2018;23(7):1747–1761. doi:10.3390/molecules23071747
  • Wang X, Guan Q, Chen W, Hu X, Li L. Novel nanoliposomal delivery system for polydatin: preparation, characterization, and in vivo evaluation. Drug Des Devel Ther. 2015;9:1805–1813. doi:10.2147/DDDT.S77615
  • Yi C, Fu M, Cao X, et al. Enhanced oral bioavailability and tissue distribution of a new potential anticancer agent, flammulina velutipes sterols, through liposomal encapsulation. J Agric Food Chem. 2013;61(25):5961–5971. doi:10.1021/jf305527823721187
  • Wang Y, Wang S, Firempong CK, et al. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech. 2017;18(3):586–594. doi:10.1208/s12249-016-0537-827151135
  • Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed. 2015;10:1001–1018. doi:10.2147/IJN.S56932
  • Chauhan P, Tyagi BK. Herbal novel drug delivery systems and transferosomes. J Drug Delivery Ther. 2018;8(3):162–168. doi:10.22270/jddt.v8i3.1772
  • Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp. 2017;8(1):1–18. doi:10.1080/20022727.2017.1325708
  • El-Refaie WM, Elnaggar YS, El-Massik MA, Abdallah OY. Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: development, in-vitro appraisal and in-vivo studies. Int J Pharm. 2015;486(1–2):88–98. doi:10.1016/j.ijpharm.2015.03.05225818063
  • Choi JH, Cho SH, Yun JJ, Yu YB, Cho CW. Ethosomes and transfersomes for topical delivery of ginsenoside Rh1 from red ginseng: characterization and in vitro evaluation. J Nanosci Nanotechnol. 2015;15(8):5660–5662. doi:10.1166/jnn.2015.1046226369134
  • Ma H, Guo D, Fan Y, Wang J, Cheng J, Zhang X. Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation. Molecules. 2018;23(7):1756–1771. doi:10.3390/molecules23071756
  • Sarwa KK, Mazumder B, Rudrapal M, Verma VK. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv. 2015;22(5):638–646. doi:10.3109/10717544.2013.87160124471764
  • Jangdey MS, Gupta A, Saraf S, Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. Artif Cells Nanomed Biotechnol. 2017;45(7):1452–1462. doi:10.1080/21691401.2016.124785028050929
  • Avadhani KS, Manikkath J, Tiwari M, et al. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017;24(1):61–74. doi:10.1080/10717544.2016.122871828155509
  • Lu K, Xie S, Han S, et al. Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats. J Transl Med. 2014;12(1):72–86. doi:10.1186/1479-5876-12-7224641917
  • Nagalakshmi S, Krishnaraj K, Jothy AM, Chaudhari PS, Pushpalatha HB, Shanmuganthan S. Fabrication and characterization of herbal drug-loaded nonionic surfactant based niosomal topical gel. J Pharm Sci Res. 2016;8(11):1271–1278.
  • Un RN, Barlas FB, Yavuz M, et al. Phyto-niosomes: in vitro assessment of the novel nanovesicles containing marigold extract. Int J Polym Mater Polym Bio Mater. 2015;64(17):927–937. doi:10.1080/00914037.2015.1030663
  • Rohilla R, Garg T, Goyal AK, Rath G. Herbal and polymeric approaches for liver-targeting drug delivery: novel strategies and their significance. Drug Deliv. 2016;23(5):1645–1661. doi:10.3109/10717544.2014.94501825101832
  • Thakkar M, Brijesh S. Physicochemical investigation and in vivo activity of anti-malarial drugs co-loaded in tween 80 niosomes. J Liposome Res. 2017;28:1–7.
  • Ambwani S, Tandon R, Ambwani TK, Malik YS. Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. J Exp Biol Agric Sci. 2018;6(1):87–107. doi:10.18006/2018.6(1).87.107
  • Rameshk M, Sharififar F, Mehrabani M, Pardakhty A, Farsinejad A, Mehrabani M. Proliferation and in vitro wound healing effects of the microniosomes containing Narcissus tazetta L. bulb extract on primary human fibroblasts (HDFs). DARU. 2018;26(1):31–42. doi:10.1007/s40199-018-0211-7
  • Pando D, Matos M, Gutiérrez G, Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf B Biointerfaces. 2015;128:398–404. doi:10.1016/j.colsurfb.2015.02.03725766923
  • Priprem A, Janpim K, Nualkaew S, Mahakunakorn P. Topical niosome gel of Zingiber cassumunar Roxb. extract for anti-inflammatory activity enhanced skin permeation and stability of compound D. AAPS PharmSciTech. 2016;17(3):631–639. doi:10.1208/s12249-015-0376-z26292930
  • Barani M, Mirzaei M, Torkzadeh-Mahani M, Nematollahi MH. Lawsone-loaded niosome and its antitumor activity in MCF-7 breast cancer cell line: a nano-herbal treatment for cancer. DARU. 2018;26(1):11–27. doi:10.1007/s40199-018-0207-330159762
  • Anghore D, Kulkarni GT. Development of novel nano niosomes as drug delivery system of spermacoce hispida extract and in vitro antituberculosis activity. Curr Nanomat. 2017;2(1):17–23. doi:10.2174/2405461502666170314151949
  • Alam MS, Ahad A, Abidin L, Aqil M, Mir SR, Mujeeb M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in wistar rats. Biomed Pharmacother. 2018;97:1514–1520. doi:10.1016/j.biopha.2017.11.07329793314
  • Gunes A, Guler E, Un RN, et al. Niosomes of nerium oleander extracts: in vitro assessment of bioactive nanovesicular structures. J Drug Deliv Sci Technol. 2017;37:158–165. doi:10.1016/j.jddst.2016.12.013
  • Budhiraja A, Dhingra G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv. 2015;22(6):723–730. doi:10.3109/10717544.2014.90301024786487
  • Scognamiglio I, De Stefano D, Campani V, et al. Nanocarriers for topical administration of resveratrol: a comparative study. Int J Pharm. 2013;440:179–187. doi:10.1016/j.ijpharm.2012.08.00922909994
  • Shen LN, Zhang YT, Wang Q, Xu L, Feng NP. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm. 2014;460:280–288. doi:10.1016/j.ijpharm.2013.11.01724269286
  • Abdulbaqi IM, Darwis Y, Assi RA, Khan NA. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des Devel Ther. 2018;12:795–813. doi:10.2147/DDDT.S158018
  • Zhao YZ, Lu CT, Zhang Y, et al. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery. Int J Pharm. 2013;454:302–309. doi:10.1016/j.ijpharm.2013.06.05223830940
  • Yu Z, Lv H, Han G, Ma K. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One. 2016;11(7):e0159967. doi:10.1371/journal.pone.015996727441661
  • Fatima Z. Formulation and performance evaluation of berberis aristata extract loaded ethosomal gel. Asian J Pharm. 2017;11(03):176–183.
  • Liu F, Sun Y, Kang C, Zhu H. Pegylated drug delivery systems: from design to biomedical applications. Nano Life. 2016;6:1642002. doi:10.1142/S1793984416420022
  • Tolia GT, Choi HH. The role of dendrimers in topical drug delivery. Pharm Technol. 2008;32(11):88–98.
  • Estanqueiro M, Amaral MH, Conceicao J, SousaLobo JM. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631–648. doi:10.1016/j.colsurfb.2014.12.04125591851
  • Iacobazzi RM, Porcelli L, Lopedota AA, et al. Targeting human liver cancer cells with lactobionic acid-G (4)-PAMAM-FITC sorafenib loaded dendrimers. Int J Pharm. 2017;528(1–2):485–497. doi:10.1016/j.ijpharm.2017.06.04928624661
  • Chittasupho C, Anuchapreeda S, Sarisuta N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm. 2017;119:310–321. doi:10.1016/j.ejpb.2017.07.00328694161
  • Luong D, Kesharwani P, Deshmukh R, et al. PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016;43:14–29. doi:10.1016/j.actbio.2016.07.01527422195
  • Ertürk AS, Gürbüz MU, Tülü M. The effect of PAMAM dendrimer concentration, generation size and surface functional group on the aqueous solubility of Candesartan cilexetil. Pharm Dev Technol. 2017;22(1):111–121. doi:10.1080/10837450.2016.121937227484586
  • Abderrezak A, Bourassa P, Mandeville JS, Sedaghat-Herati R, Tajmir-Riahi HA. Dendrimers bind antioxidant polyphenols and cisplatin drug. PLoS One. 2012;7:e33102. doi:10.1371/journal.pone.003310222427960
  • Madaan K, Lather V, Pandita D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv. 2016;23(1):254–262. doi:10.3109/10717544.2014.91056424845475
  • Wang L, Xu X, Zhang Y, et al. Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J Mater Sci Mater Med. 2013;24:2137–2144. doi:10.1007/s10856-013-4969-323779153
  • Falconieri MC, Adamo M, Monasterolo C, Bergonzi MC, Coronnello M, Bilia AR. New dendrimer-based nanoparticles enhance curcumin solubility. Planta Med. 2017;83(5):420–425. doi:10.1055/s-0042-10316127002394
  • Gu L, Wu ZH, Qi X, et al. Polyamidomine dendrimers: an excellent drug carrier for improving the solubility and bioavailability of puerarin. Pharm Dev Technol. 2013;18(5):1051–1057. doi:10.3109/10837450.2011.65382222303809
  • Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):151–165. doi:10.1089/jop.2012.023223410062
  • Diaz C, Guzmán J, Jiménez VA, Alderete JB. Partially PEGylated PAMAM dendrimers as solubility enhancers of silybin. Pharm Dev Technol. 2018;23(7):689–696. doi:10.1080/10837450.2017.131513428368674
  • Yesil Celiktas O, Pala C, Cetin Uyanikgil EO, Sevimli Gur C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in neuro blastoma cells. Anal Biochem. 2017;519:1–7. doi:10.1016/j.ab.2016.12.00427939389
  • Qu WJ, Li HF, Su YY, Dong ZQ, Ge YR. Absorption enhancing effects and safety of PAMAM dendrimers on liquiritin. China J Chi Mater Med. 2017;42(9):1766–1771. doi:10.19540/j.cnki.cjcmm.2017.0070
  • Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184–202. doi:10.1016/j.ejps.2015.12.03126747018
  • Boutet E. Scheme of a micelle formed by phospholipids in an aqueous solution. Available from: https://commons.wikimedia.org/wiki/File:Micelle_scheme-en.svg. Accessed 12 5, 2019.
  • Zou F, Wei K, Peng X. Thermodynamics of micellization and sustained release of folate targeted capecitabine loaded nanomicelles. Nanosci Nanotechnol. 2016;16:8519–8527. doi:10.1166/jnn.2016.12710
  • Han R, Sun Y, Kang C, Sun H, Wei W. Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy. J Drug Target. 2017;25:140–148. doi:10.1080/1061186X.2016.120764927356094
  • Wang Z, Yu Y, Ma J, et al. LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharm. 2012;9:2646–2657. doi:10.1021/mp300210722853186
  • Ren J, Fang Z, Yao L, et al. A micelle-like structure of poloxamer–methotrexate conjugates as nanocarrier for methotrexate delivery. Int J Pharm. 2015;487(1–2):177–186. doi:10.1016/j.ijpharm.2015.04.01425865570
  • Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials. 2012;33(2):679−691.22019123
  • Gou M, Men K, Shi H, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3(4):1558–1567. doi:10.1039/c0nr00758g21283869
  • Abdelmoneem MA, Mahmoud M, Zaky A. et al. Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J Control Release;2018 78–93. doi:10.1016/j.jconrel.2018.08.026
  • Wu H, Yu T, Tian Y, Wang Y, Zhao R, Mao S. Enhanced liver-targeting via coadministration of 10-hydroxycamptothecin polymeric micelles with vinegar baked radix bupleuri. Phytomedicine. 2018;44:1–8. doi:10.1016/j.phymed.2018.04.02229895488
  • Su Y, Huang N, Chen D, et al. Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle. Int J Nanomed. 2017;12:4019. doi:10.2147/IJN.S132639
  • Anantaworasakul P, Okonogi S. Encapsulation of sesbania grandiflora extract in polymeric micelles to enhance its solubility, stability, and antibacterial activity. J Microencapsul. 2017;34(1):73–81. doi:10.1080/02652048.2017.128427728097930
  • Baldissera MD, Souza CF, Boligon AA, et al. Solving the challenge of the blood–brain barrier to treat infections caused by Trypanosoma evansi: evaluation of nerolidol-loaded nanospheres in mice. Parasitology. 2017;144(11):1543–1550. doi:10.1017/S003118201700110X28641606
  • Harper 3D. Nano sphere from carbon atoms isolated on white background. Available from: https://www.shutterstock.com/image-illustration/nano-sphere-carbon-atoms-isolated-on-50117683. Accessed 125, 2019.
  • Wang T, Wu C, Fan G, Li T, Gong H, Cao F. Ginkgo biloba extracts-loaded starch nano-spheres: preparation, characterization, and in vitro release kinetics. Int J Biol Macromol. 2018;106:148–157. doi:10.1016/j.ijbiomac.2017.08.01228780415
  • Pirouzmand H, Khameneh B, Tafaghodi M. Immunoadjuvant potential of cross-linked dextran microspheres mixed with chitosan nanospheres encapsulated with tetanus toxoid. Pharm Biol. 2017;55(1):212–227. doi:10.1080/13880209.2016.125703227927058
  • Elzoghby A. Polymeric nanocarriers as robust platforms for cancer therapy. Curr Pharm Des. 2017;23(35):5211–5212. doi:10.2174/138161282399917110612580129110600
  • Li C, Zhang D, Guo H, et al. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. Int J Pharm. 2013;448:79–86. doi:10.1016/j.ijpharm.2013.03.01923518367
  • Snima KS, Arunkumar P, Jayakumar R, Lakshmanan VK. Silymarin encapsulated poly(D, L-lactic-co-glycolic acid) nanoparticles: a prospective candidate for prostate cancer therapy. J Biomed Nanotechnol. 2014;10:559–570. doi:10.1166/jbn.2014.173524734508
  • Pereira K, Quintela E, Da Silva D, et al. Characterization of nanospheres containing Zanthoxylum riedelianum Fruit essential oil and their insecticidal and deterrent activities against Bemisia tabaci (hemiptera: aleyrodidae). Molecules. 2018;23(8):2052–2070. doi:10.3390/molecules23082052
  • Holz JP, Bottene MK, Jahno VD, Einloft S, Ligabue R. Menthol-loaded PLGA micro and nanospheres: synthesis, characterization and degradation in artificial saliva. Mater Res. 2018;21(2):1–9. doi:10.1590/1980-5373-mr-2017-0488
  • Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release. 2014;183:51–66. doi:10.1016/j.jconrel.2014.03.03024667572
  • Lu Y, Qi J, Dong X, Zhao W, Wu W. The in vivo fate of nanocrystals. Drug Discov Today. 2017;22(4):744–750. doi:10.1016/j.drudis.2017.01.00328088442
  • Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B. 2016;6(2):106–113. doi:10.1016/j.apsb.2015.11.00527006893
  • Sharma OP, Patel V, Mehta T, et al. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6:399–413. doi:10.1007/s13346-016-0292-027165145
  • Choi JS, Park JS. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting. Drug Des Devel Ther. 2017;11:17–26. doi:10.2147/DDDT.S122984
  • Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm. 2011;415(1–2):293–300. doi:10.1016/j.ijpharm.2011.05.07521679755
  • de Waard H, Frijlink HW, Hinrichs WL. Bottom up preparation techniques for nanocrystals of lipophilic drugs. Pharmtech Res. 2011;28:1220e1223.
  • Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(1):13–23. doi:10.1016/j.ajps.2014.08.005
  • Malamatari M, Taylor KM, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23:534–547. doi:10.1016/j.drudis.2018.01.01629326082
  • Al Shaal L, Shegokar R, Müller RH. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm. 2011;420(1):133–140. doi:10.1016/j.ijpharm.2011.08.01821871547
  • Srivalli KM, Mishra B. Drug nanocrystals: a way toward scale-up. Saudi Pharm J. 2016;24(4):386–404. doi:10.1016/j.jsps.2014.04.00727330370
  • Vidlarova L, Romero GB, Hanuš J, et al. Nanocrystals for dermal penetration enhancement – effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm. 2016;104:216–225. doi:10.1016/j.ejpb.2016.05.00427163241
  • Pi J, Liu Z, Wang H, et al. Ursolic acid nanocrystals for dissolution rate and bioavailability enhancement: influence of different particle size. Curr Drug Deliv. 2016;13(8):1358–1366. doi:10.2174/156720181366616030714275726953239
  • Sahoo NG, Kakran M, Shaal LA, et al. Preparation and characterization of quercetin nanocrystals. J Pharm Sci. 2011;100(6):2379–2390. doi:10.1002/jps.2244621491450
  • Sathishkumar P, Gu FL, Zhan Q, Palvannan T, Yusoff AR. Flavonoids mediated ‘green' nanomaterials: a novel nanomedicine system to treat various diseases–current trends and future perspective. Mater Lett. 2018;210:26–30. doi:10.1016/j.matlet.2017.08.078
  • Mir M, Ishtiaq S, Rabia S, et al. Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett. 2017;12(1):500–515. doi:10.1186/s11671-017-2249-828819800
  • Singh RP, Gangadharappa HV, Mruthunjaya K. Phytosome loaded novel herbal drug delivery system: a review. Int Res J Pharm. 2016;7(6):15–21. doi:10.7897/2230-8407
  • Rasaie S, Ghanbarzadeh S, Mohammadi M, Hamishehkar H. Nano phytosomes of quercetin: a promising formulation for fortification of food products with antioxidants. Pharm Sci. 2014;20(3):96–101.
  • Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2014;9:1025–1037. doi:10.2147/IJN
  • Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique. Int J Nanomed. 2016;11:3417–3434. doi:10.2147/IJN.S112045
  • Anwar E, Farhana N. Formulation and evaluation of phytosome-loaded maltodextrin-gum Arabic microsphere system for delivery of Camellia sinensis extract. J Young Pharm. 2018;10(2s):S56. doi:10.5530/jyp
  • El-Menshawe SF, Ali AA, Rabeh MA, Khalil NM. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: an approach for acceptable level of evidence of an effective novel herbal weight loss product. Int J Nanomed. 2018;13:307–318. doi:10.2147/IJN.S153429
  • Hooresfand Z, Ghanbarzadeh S, Hamishehkar H. Preparation and characterization of rutin-loaded nanophytosomes. Pharm Sci. 2015;21(3):145–151. doi:10.15171/PS.2015.29
  • Vu HT, Hook SM, Siqueira SD, Müllertz A, Rades T, McDowell A. Are phytosomes a superior nanodelivery system for the antioxidant rutin? Int J Pharm. 2018;122:214–229.
  • Gahandule MB, Jadhav SJ, Gadhave MV, Gaikwad DD. Formulation and development of hepato-protective butea monosperma-phytosome. Int J Res Pharm Pharm Sci. 2016;1(4):21–27.
  • Singh RP, Gangadharappa HV, Mruthunjaya K. Phytosome complexed with chitosan for gingerol delivery in the treatment of respiratory infection: in vitro and in vivo evaluation. Eur J Pharm Sci. 2018;122:214–229. doi:10.1016/j.ejps.2018.06.02829966737
  • Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: design, optimization, in vitro and in vivo evaluation. J Mol Liq. 2016;218:219–232. doi:10.1016/j.molliq.2016.02.081
  • Senapati PC, Sahoo SK, Sahu AN. Mixed surfactant based (SNEDDS) self-nanoemulsifying drug delivery system presenting efavirenz for enhancement of oral bioavailability. Biomed Pharmacother. 2016;80:42–51. doi:10.1016/j.biopha.2016.02.03927133038
  • Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv. 2016;23(9):3639–3652. doi:10.1080/10717544.2016.121499027685505
  • Agrawal AG, Kumar A, Gide PS. Formulation of solid self-nanoemulsifying drug delivery systems using N-methyl pyrrolidone as cosolvent. Drug Dev Ind Pharm. 2015;41:594–604. doi:10.3109/03639045.2014.88669524517575
  • Li W, Yi S, Wang Z, et al. Self-nanoemulsifying drug delivery system of persimmon leaf extract: optimization and bioavailability studies. Int J Pharm. 2011;420(1):161–171. doi:10.1016/j.ijpharm.2011.08.02421884770
  • Avachat AM, Patel VG. Self-nanoemulsifying drug delivery system of stabilized ellagic acid–phospholipid complex with improved dissolution and permeability. Saudi Pharm J. 2015;23(3):276–289. doi:10.1016/j.jsps.2014.11.00126106276
  • Tran TH, Guo Y, Song D, Bruno RS, Lu X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci. 2014;103(3):840–852. doi:10.1002/jps.2385824464737
  • Shen J, Bi J, Tian H, et al. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with akebia saponin D–phospholipid complex. Int J Nanomed. 2016;11:4919–4929. doi:10.2147/IJN.S108765
  • Shukla M, Jaiswal S, Sharma A, et al. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev Ind Pharm. 2017;43(5):847–861. doi:10.1080/03639045.2016.123973227648633
  • Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015;22(4):552–561. doi:10.3109/10717544.2013.87800324512268
  • Yeom DW, Chae BR, Son HY, et al. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system. Int J Nanomed. 2017;12:3533–3545. doi:10.2147/IJN.S136599
  • Yan B, Wang Y, Ma Y, Zhao J, Liu Y, Wang L. In vitro and in vivo evaluation of poly (acrylic acid) modified mesoporous silica nanoparticles as pH response carrier for β-elemene self-micro emulsifying. International Journal of Pharmaceutics. 2019;572:118768- 18778.
  • Allen JL. Basics of compounding-nonsterile: compounding self-emulsifying drug delivery systems and other self-emulsifying lipid formulations, part 1. Int J Pharm Compd. 2018;22(3):220–228.29878890
  • Jakab G, Fülöp V, Santha K, Szeröczei D, Balogh E, Antal L. Formulation possibilities of self-emulsifying drug delivery systems, microemulsions and nanoemulsions. Acta Pharm Hung. 2017;87(1):27–34.29489095
  • Zhang L, Zhu W, Yang C, et al. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomed. 2012;7:151–162. doi:10.2147/IJN.S27639
  • Chen Y, Zhang H, Yang J, Sun H. Improved antioxidant capacity of optimization of a self-microemulsifying drug delivery system for resveratrol. Molecules. 2015;20:21167–21177. doi:10.3390/molecules20121975026633319
  • Jaisamut P, Wiwattanawongsa K, Graidist P, Sangsen Y, Wiwattanapatapee R. Enhanced oral bioavailability of curcumin using a supersaturatable self-microemulsifying system incorporating a hydrophilic polymer; in vitro and in vivo investigations. AAPS PharmSciTech. 2018;19(2):730–740. doi:10.1208/s12249-017-0857-328975598
  • Qiao J, Ji D, Sun S, et al. Oral bioavailability and lymphatic transport of pueraria flavone-loaded self-emulsifying drug-delivery systems containing sodium taurocholate in rats. Pharmaceutics. 2018;10(3):147–160. doi:10.3390/pharmaceutics10030147
  • Sornsuvit C, Hongwiset D, Yotsawimonwat S, Toonkum M, Thongsawat S, Taesotikul W. The bioavailability and pharmacokinetics of silymarin SMEDDS formulation study in healthy thai volunteers. Evid Based Complement Altern Med. 2018;1:1–7. doi:10.1155/2018/1507834
  • Dhumal DM, Akamanchi KG. Self-microemulsifying drug delivery system for camptothecin using new bicephalous heterolipid with tertiary-amine as branching element. Int J Pharm. 2018;541(1–2):48–55. doi:10.1016/j.ijpharm.2018.02.03029462684
  • Sato Y, Joumura T, Nashimoto S, et al. Enhancement of lymphatic transport of lutein by oral administration of a solid dispersion and a self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2018;127:171–176. doi:10.1016/j.ejpb.2018.02.01329428792
  • Karami Z, Rezaeian I, Zahedi P, Abdollahi M. Preparation and performance evaluations of electrospun poly (ε‐caprolactone), poly (lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. J Appl Polym Sci. 2013;129(2):756–766. doi:10.1002/app.38683
  • Available from: http://science.sciencemag.org/content/294/5547/1684/F1. Accessed 125, 2019.
  • Wang H, Wei J, Yang C, et al. The inhibition of tumor growth and metastasis by self-assembled nanofibers of taxol. Biomaterials. 2012;33(24):5848–5853. doi:10.1016/j.biomaterials.2012.04.04722607913
  • Wagh A, Singh J, Qian S, Law B. A short circulating peptide nanofiber as a carrier for tumoral delivery. Nanomedicine. 2013;9(4):449–457. doi:10.1016/j.nano.2012.10.00923178287
  • Liu J, Xu H, Zhang Y, et al. Novel tumor-targeting, selfassembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomed. 2014;9:197–207. doi:10.2147/IJN.S55875
  • Ranjbar MM, Bahrami SH. Electrospun curcumin loaded poly (ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int J Biol Macromol. 2016;84:448–456. doi:10.1016/j.ijbiomac.2015.12.02426706845
  • Choi J, Yang BJ, Bae GN, Jung JH. Herbal extract incorporated nanofiber fabricated by an electrospinning technique and its application to antimicrobial air filtration. J Ocul Pharmacol Ther. 2015;7(45):25313–25320. doi:10.1021/acsami.5b07441
  • Bonan RF, Bonan PR, Batista AU, et al. In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with copaiba (Copaifera sp.) oil. Mater Sci Eng C. 2015;48:372–377. doi:10.1016/j.msec.2014.12.021
  • Jouybar A, Seyedjafari E, Ardeshirylajimi A, et al. Enhanced skin regeneration by herbal extract‐coated poly‐L‐lactic acid nanofibrous scaffold. Artif Organs. 2017;41(11):E296–E307. doi:10.1111/aor.1292628621889
  • Parvathi K, Krishnan AG, Anitha A, Jayakumar R, Nair MB. Poly (L-lactic acid) nanofibers containing cissus quadrangularis induced osteogenic differentiation in vitro. Int J Biol Macromol. 2018;110:514–521. doi:10.1016/j.ijbiomac.2017.11.09429155154
  • Wang J, Tian L, He L, et al. Lycium barbarum polysaccharide encapsulated poly lactic-co-glycolic acid nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering. Sci Rep. 2018;8(1):8669–8683. doi:10.1038/s41598-018-26837-z29875468
  • Lee JS, Feijen J. Biodegradable polymersomes as carriers and release systems for paclitaxel using oregon green® 488 labeled paclitaxel as a model compound. J Control Release. 2012;158(2):312–318. doi:10.1016/j.jconrel.2011.10.02522063005
  • Pijpers IA, Abdelmohsen LK, Xia Y, et al. Adaptive polymersome and micelle morphologies in anticancer nanomedicine: from design rationale to fabrication and proof‐of‐concept studies. Adv Ther. 2018;1:1800068–1800081. doi:10.1002/adtp.201800068
  • Gupta PK, Jaiswal AK, Asthana S, Dube A, Mishra PR. Antigen presenting cells targeting and stimulation potential of lipoteichoic acid functionalized lipo-polymerosome: a chemo-immunotherapeutic approach against intracellular infectious disease. Biomacromolecules. 2015;16(4):1073–1087. doi:10.1021/bm501515625671728
  • Gupta PK, Asthana S, Jaiswal AK, et al. Exploitation of lectinized lipo-polymerosome encapsulated amphotericin B to target macrophages for effective chemotherapy of visceral leishmaniasis. Bioconjug Chem. 2014;25(6):1091–1102. doi:10.1021/bc500087h24842628
  • Gupta PK, Jaiswal AK, Kumar V, et al. Covalent functionalized self-assembled lipo-polymerosome bearing amphotericin B for better management of leishmaniasis and its toxicity evaluation. Mol Pharm. 2014;11(3):951–963. doi:10.1021/mp400603t24495144
  • Hammer DA, Robbins GP, Haun JB, et al. Leukopolymersomes. Faraday Discuss. 2008;139:129–141. doi:10.1039/b717821b19048993
  • Xu J, Zhao Q, Jin Y, Qiu L. High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy. Nanomedicine. 2014;10(2):349–358. doi:10.1016/j.nano.2013.08.00423969103
  • Yang J, Dai G, Hou Y, et al. Quantification of oxymatrine in rat plasma by UPLC-MS/MS to support the pharmacokinetic analyses of oxymatrine-loaded polymersomes. Anal Methods. 2014;6(6):1811–1817. doi:10.1039/C3AY42294A
  • Goyal K, Konar A, Kumar BH, Koul V. Lactoferrin-conjugated pH and redox-sensitive polymersomes based on PEG-SS-PLA-PCL-OH boost delivery of bacosides to the brain. Nanoscale. 2018;10(37):17781–17798. doi:10.1039/C8NR03828G30215650
  • Pang Z, Feng L, Hua R, et al. Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol Pharm. 2010;7(6):1995–2005. doi:10.1021/mp100277h20957995
  • Tu YS, Fu JW, Sun DM, et al. Preparation, characterisation and evaluation of curcumin with piperine-loaded cubosome nanoparticles. J Microencapsul. 2014;31(6):551–559. doi:10.3109/02652048.2014.88560724641575
  • Rizwan SB, Boyd BJ. Cubosomes: structure, preparation and use as an antigen delivery system In: Subunit Vaccine Delivery. New York, NY, USA: Springer; 2015:125–140.
  • Tian Y, Li JC, Zhu JX, et al. Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med Sci Monit. 2017;23:2426–2435. doi:10.12659/MSM.90468328529305
  • Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv. 2015;6(12):1347–1364. doi:10.4155/tde.15.8126652281
  • Saraf S, Gupta A, Alexander A, Khan J, Jangde M, Saraf S. Advancements and avenues in nanophytomedicines for better pharmacological responses. J Nanosci Nanotechnol. 2015;15(6):4070–4079. doi:10.1166/jnn.2015.1033326369014
  • Nithya R, Jerold P, Siram K. Cubosomes of dapsone enhanced permeation across the skin. J Drug Deliv Sci Technol. 2018;48:75–81. doi:10.1016/j.jddst.2018.09.002
  • Bazylińska U, Kulbacka J, Schmidt J, Talmon Y, Murgia S. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. J Colloid Interface Sci. 2018;522:163–173. doi:10.1016/j.jcis.2018.03.06329601958
  • Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomed. 2015;10:5459–5473. doi:10.2147/IJN.S87336
  • Herman A, Herman AP. Mechanism of action of herbs and their active constituents used in hair loss treatment. Fitoterapia. 2016;114:18–25. doi:10.1016/j.fitote.2016.08.00827552901
  • Archana A, Vijayasri K, Madhurim M, Kumar CA. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem Sci Trans. 2014;4(1):75–80.
  • Ou N, Sun Y, Zhou S, et al. Evaluation of optimum conditions for achyranthes bidentata polysaccharides encapsulated in cubosomes and immunological activity in vitro. Int J Biol Macromol. 2018;109:748–760. doi:10.1016/j.ijbiomac.2017.11.06429157913
  • Matloub AA, AbouSamra MM, Salama AH, Rizk MZ, Aly HF, Fouad GI. Cubic liquid crystalline nanoparticles containing a polysaccharide from ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm J. 2018;26(2):224–231. doi:10.1016/j.jsps.2017.12.00730166920
  • Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629–1654. doi:10.3390/ijms1401162923344060
  • Fathi M, Martin A, McClements DJ. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Tech. 2014;39(1):18–39. doi:10.1016/j.tifs.2014.06.007
  • Biranje SS, Madiwale PV, Patankar KC, Chhabra R, Dandekar-Jain P, Adivarekar RV. Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. Int J Biol Macromol. 2018;121:936–946. doi:10.1016/j.ijbiomac.2018.10.12530342937
  • Tan Q, Liu W, Guo C, Zhai G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomed. 2011;6:16211630. doi:10.2147/IJN.S25646
  • Bu L, Gan LC, Guo XQ, et al. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharm. 2013;452(1–2):355–362. doi:10.1016/j.ijpharm.2013.05.00723685116
  • Samrot AV, Burman U, Philip SA, Shobana N, Chandrasekaran K. Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inf Med Unlocked. 2018;10:159–182. doi:10.1016/j.imu.2017.12.010
  • Esfanjani AF, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B Biointerfaces. 2016;146:532–543. doi:10.1016/j.colsurfb.2016.06.05327419648
  • Khan N, Bharali DJ, Adhami VM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis. 2014;35:415–423. doi:10.1093/carcin/bgt32124072771
  • Loch-Neckel G, Santos-Bubniak L, Mazzarino L, et al. Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs. J Pharm Sci. 2015;104:3524–3534. doi:10.1002/jps.2454826085173
  • Karri VV, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93:1519–1529. doi:10.1016/j.ijbiomac.2016.05.03827180291
  • Feng B, Ashraf MA, Peng L. Characterization of particle shape, zeta potential, loading efficiency and outdoor stability for chitosan-ricinoleic acid loaded with rotenone. Open Life Sci. 2016;11(1):380–386. doi:10.1515/biol-2016-0050
  • Suksaeree J, Monton C, Madaka F, et al. Formulation, physicochemical characterization, and in vitro study of chitosan/HPMC blends-based herbal blended patches. AAPS PharmSciTech. 2015;16(1):171–181. doi:10.1208/s12249-014-0216-625233803
  • Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials. 2015;5(4):2054–2130. doi:10.3390/nano504205428347111
  • Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev. 2018;127:167–184. doi:10.1016/j.addr.2018.03.00729567395
  • Atta S, Khaliq S, Islam A, et al. Injectable biopolymer based hydrogels for drug delivery applications. Int J Biol Macromol. 2015;80:240–245. doi:10.1016/j.ijbiomac.2015.06.04426118484
  • Córdoba AL, Deladino L, Martino M. Effect of starch filler on calcium alginate hydrogels loaded with yerba mate antioxidants. Carbohydr Polym. 2013;95:315–323. doi:10.1016/j.carbpol.2013.03.01923618275
  • Mun S, Kim YR, McClements DJ. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chem. 2015;173:454–461. doi:10.1016/j.foodchem.2014.10.05325466045
  • Balestrin LA, Bidone J, Bortolin RC, Moresco K, Moreira JC, Teixeira HF. Protective effect of a hydrogel containing Achyrocline satureioides extract loaded nanoemulsion against UV-induced skin damage. J Photochem Photobiol B. 2016;163:269–276. doi:10.1016/j.jphotobiol.2016.08.03927599114
  • Lustosa AK, de Jesus Oliveira AC, Quelemes PV, et al. In situ synthesis of silver nanoparticles in a hydrogel of carboxymethyl cellulose with phthalated-cashew gum as a promising antibacterial and healing agent. Int J Mol Sci. 2017;18(11):2399–2413. doi:10.3390/ijms18112399
  • Qureshi MA, Khatoon F, Rizvi MA, Zafaryab M. Ethyl acetate Salix alba leaves extract-loaded chitosan-based hydrogel film for wound dressing applications. J Biomater Sci Polym Ed. 2015;26(18):1452–1464. doi:10.1080/09205063.2015.110084326525493
  • Muhsin MD, George G, Beagley K, Ferro V, Armitage C, Islam N. Synthesis and toxicological evaluation of a chitosan-L-leucine conjugate for pulmonary drug delivery applications. Biomacromolecules. 2014;15(10):3596–3607. doi:10.1021/bm500863525191851
  • Available from: https://www.labsexplorer.com/service/polymer-drug-conjugation-service_525. Accessed 125, 2019.
  • Shohani S, Mondanizadeh M, Abdoli A, et al. Trimethyl chitosan improves anti-HIV effects of atripla as a new nanoformulated drug. Curr HIV Res. 2017;15(1):56–65. doi:10.2174/1570162X1466616121614280627993121
  • Du C, Qian J, Zhou L, Su Y, Zhang R, Dong CM. Biopolymer–drug conjugate nanotheranostics for multimodal imaging-guided synergistic cancer photothermal–chemotherapy. J Ocul Pharmacol Ther. 2017;9(37):31576–31588. doi:10.1021/acsami.7b10163
  • Yi J, Liu Y, Zhang Y, Gao L. Fabrication of resveratrol-loaded whey protein–dextran colloidal complex for the stabilization and delivery of β-carotene emulsions. J Agric Food Chem. 2018;66(36):9481–9489. doi:10.1021/acs.jafc.8b0297330125505
  • Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr Polym. 2018;193:99–107. doi:10.1016/j.carbpol.2018.03.09229773403
  • Singh A, Kureel AK, Dutta PK, Kumar S, Rai AK. Curcumin loaded chitin-glucan quercetin conjugate: synthesis, characterization, antioxidant, in vitro release study, and anticancer activity. Int J Biol Macromol. 2018;110:234–244. doi:10.1016/j.ijbiomac.2017.11.00229128588
  • Chen J, Qin X, Zhong S, Chen S, Su W, Liu Y. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules. 2018;23(5):1179–1191. doi:10.3390/molecules23051179
  • Zhang H, Xu W, Omari-Siaw E, et al. Redox-responsive PEGylated self-assembled prodrug-nanoparticles formed by single disulfide bond bridge periplocymarin-vitamin E conjugate for liver cancer chemotherapy. Drug Deliv. 2017;24(1):1170–1178. doi:10.1080/10717544.2017.136539328835137
  • Kang C, Sun Y, Wang M, Cheng X. Nanosized camptothecin conjugates for single and combined drug delivery. Eur J BioMed Res. 2016;2:8–14. doi:10.18088/ejbmr.2.1.2016.pp8-14
  • Luna Nanotech. Gold Nanoparticles - Citrate. Available from: https://www.lunanano.com/product-page/gold-nanoparticles-citrate-coated. Accessed 125, 2019.
  • Poudel BK, Soe ZC, Ruttala HB, et al. In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers. Int J Pharm. 2018;548(1):92–103. doi:10.1016/j.ijpharm.2018.06.05629959089
  • Vio V, Jose Marchant M, Araya E, Kogan JM. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr Pharm Des. 2017;23(13):1916–1926. doi:10.2174/138161282366617010515294828056734
  • Vodyanoy V, Daniels Y, Pustovyy O, MacCrehan WA, Muramoto S, Stan G. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells. Int J Nanomed. 2016;11:1567–1576. doi:10.2147/IJN
  • Vijayakumar V, Samal SK, Mohanty S, Nayak SK. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol. 2018;122:137–148. doi:10.1016/j.ijbiomac.2018.10.12030342131
  • Sun YW, Wang LH, Meng DL, Che X. A green and facile preparation approach, licochalcone A capped on hollow gold nanoparticles, for improving the solubility and dissolution of anticancer natural product. Oncotarget. 2017;8(62):105673–105681. doi:10.18632/oncotarget.2238729285282
  • Azeez L, Lateef A, Adebisi SA. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl Nanosci. 2017;7(1–2):59–66. doi:10.1007/s13204-017-0546-2
  • Namvar F, Rahman HS, Mohamad R, et al. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. Evid Based Complement Altern Med. 2015;2015:1–11. doi:10.1155/2015/593014
  • Danafar H, Sharafi A, Kheiri S. Co-delivery of sulforaphane and curcumin with PEGylated iron oxide-gold core shell nanoparticles for delivery to breast cancer cell line. Iran J Pharm Res. 2018;17(2):480–494.29881406
  • Azizi S, Shahri MM, Rahman HS, Rahim RA, Rasedee A, Mohamad R. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. Int J Nanomed. 2017;12:8841–8853. doi:10.2147/IJN.S149371
  • Poonia N, Lather V, Pandita D. Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer. Drug Discov Today. 2017;23(2):315–332. doi:10.1016/j.drudis.2017.10.02229128658
  • Al-Asmar A, Giosafatto CV, Sabbah M, Sanchez A, Villalonga Santana R, Mariniello L. Effect of Mesoporous Silica Nanoparticles on The Physicochemical Properties of Pectin Packaging Material for Strawberry Wrapping. Nanomaterials. 2020;10(1):52–70.
  • Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018;8(2):165–177. doi:10.1016/j.apsb.2018.01.00729719777
  • Desai D, Zhang J, Sandholm J, et al. Lipid bilayer-gated mesoporous silica nanocarriers for tumor-targeted delivery of zoledronic acid in vivo. Mol Pharmacol. 2017;14(9):3218–3227. doi:10.1021/acs.molpharmaceut.7b00519
  • Cao X, Deng WW, Fu M, et al. In vitro release and in vitro–in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int J Nanomed. 2012;7:753–762. doi:10.2147/IJN.S28348
  • AbouAitah K, Swiderska-Sroda A, Farghali AA, et al. Folic acid–conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget. 2018;9(41):26466–26490. doi:10.18632/oncotarget.2547029899871
  • Lin J, Cai Q, Tang Y, et al. PEGylated lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: design, characterization and its cytotoxic effect. Int J Pharm. 2018;536(1):272–282. doi:10.1016/j.ijpharm.2017.10.04329079221
  • Li T, Chen X, Liu Y, et al. pH-sensitive mesoporous silica nanoparticles anticancer prodrugs for sustained release of ursolic acid and the enhanced anti-cancer efficacy for hepatocellular carcinoma cancer. Eur J Pharm Sci. 2017;96:456–463. doi:10.1016/j.ejps.2016.10.01927771513
  • Kumar B, Kulanthaivel S, Mondal A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces. 2017;150:352–361. doi:10.1016/j.colsurfb.2016.10.04927847225
  • Choi JY, Ramasamy T, Kim SY, et al. PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy. Acta Biomater. 2016;39:94–105. doi:10.1016/j.actbio.2016.05.01227163403
  • Souza AC, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front Microbiol. 2017;8(336):1–13. doi:10.3389/fmicb.2017.0033628197127
  • García Rubia G, Peigneux A, Jabalera Y, et al. pH-dependent adsorption release of doxorubicin on mamc-biomimetic magnetite nanoparticles. Langmuir. 2018;34(45):13713–13724. doi:10.1021/acs.langmuir.8b0310930394747
  • Lungu II, Radulescu M, Mogosanu GD, Grumezescu AM. pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy. Rom J Morphol Embryol. 2016;57(1):23–32.27151685
  • Wang C, Zhang H, Chen Y, Shi F, Chen B. Gambogic acid-loaded magnetic Fe3O4 nanoparticles inhibit panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1. Int J Nanomed. 2012;7:781–787. doi:10.2147/IJN.S28509
  • Rayegan A, Allafchian A, Sarsari IA, Kameli P. Synthesis and characterization of basil seed mucilage coated Fe3O4 magnetic nanoparticles as a drug carrier for the controlled delivery of cephalexin. Int J Biol Macromol. 2018;113:317–328. doi:10.1016/j.ijbiomac.2018.02.13429481957
  • Arokiyaraj S, Saravanan M, Prakash NU, Arasu MV, Vijayakumar B, Vincent S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater Res Bull. 2013;48(9):3323–3327. doi:10.1016/j.materresbull.2013.05.059
  • Namvar F, Rahman HS, Mohamad R, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomed. 2014;9:2479–2488. doi:10.2147/IJN.S59661
  • Allafchian A, Jalali SA, Hosseini F, Massoud M. Ocimum basilicum mucilage as a new green polymer support for silver in magnetic nanocomposites: production and characterization. J Environ Chem Eng. 2017;5(6):5912–5920. doi:10.1016/j.jece.2017.11.023
  • Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomed. 2012;7:5745–5756. doi:10.2147/IJN.S35746
  • Wang C, Liu X, Chen S, Hu FQ, Sun J, Yuan H. Facile preparation of phospholipid-amorphous calcium carbonate hybrid nanoparticles: toward controllable burst drug release and enhanced tumor penetration. Chem Commun. 2018;54(93):13080–13083. doi:10.1039/C8CC07694D
  • Zhao L, Zhang Y, Miao Y, Nie L. Controlled synthesis, characterization and application of hydrophobic calcium carbonate nanoparticles in PVC. Powder Technol. 2016;288:184–190. doi:10.1016/j.powtec.2015.11.001
  • Näkki S, Wang JT, Wu J, et al. Designed inorganic porous nanovector with controlled release and MRI features for safe administration of doxorubicin. Int J Pharm. 2019;554:327–336. doi:10.1016/j.ijpharm.2018.10.07430391665
  • Hammadi NI, Abba Y, Hezmee MNM, et al. Formulation of a sustained release docetaxel loaded cockle shell-derived calcium carbonate nanoparticles against breast cancer. Pharm Res. 2017;34:1193–1203. doi:10.1007/s11095-017-2135-128382563
  • Shi H, Li L, Zhang L, et al. Designed preparation of polyacrylic acid/calcium carbonate nanoparticles with high doxorubicin payload for liver cancer chemotherapy. Cryst Eng Comm. 2015;17:4768–4773. doi:10.1039/C5CE00708A
  • Tully J, Fakhrullin R, Lvov Y. Halloysite clay nanotube composites with sustained release of chemicals In: Nanomaterials and Nanoarchitectures. Springer, Dordrecht; 2015:87–118.
  • Lazzara G, Cavallaro G, Panchal A, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci. 2018;35:42–50. doi:10.1016/j.cocis.2018.01.002
  • Tully J, Yendluri R, Lvov Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules. 2016;17(2):615–621. doi:10.1021/acs.biomac.5b0154226699154
  • Vergaro V, Lvov YM, Leporatti S. Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci. 2012;12(9):1265–1271. doi:10.1002/mabi.v12.922887783
  • Lee MH, Seo HS, Park HJ. Thyme oil encapsulated in halloysite nanotubes for antimicrobial packaging system. J Food Sci. 2017;82(4):922–932. doi:10.1111/1750-3841.1367528272803
  • Cavallaro G, Lazzara G, Massaro M, et al. Biocompatible poly (N-isopropylacrylamide)-halloysite nanotubes for thermo responsive curcumin release. J Phys Chem C. 2015;119(16):8944–8951. doi:10.1021/acs.jpcc.5b00991
  • Massaro M, Piana S, Colletti CG, et al. Multicavity halloysite–amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. J Mater Chem B. 2015;3(19):4074–4081. doi:10.1039/C5TB00564G32262629
  • Biddeci G, Cavallaro G, Di Blasi F, et al. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr Polym. 2016;152:548–557. doi:10.1016/j.carbpol.2016.07.04127516303
  • Gorrasi G. Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym. 2015;127:47–53. doi:10.1016/j.carbpol.2015.03.05025965455
  • Chamorro-Garcia A, Merkoçi A. Nanobiosensors in diagnostics. Nanobiomedicine. 2016;3:1849543516663574. doi:10.1177/184954351666357429942385
  • Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S. Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem. 2013;20(11):1333–1354. doi:10.2174/092986731132011000123432581
  • Ng CM, Loh H-S, Muthoosamy K, Sridewi N, Manickam S. Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide-activated amidation. Int J Nanomed. 2016;11:1607–1614. doi:10.2147/IJN.S98726
  • Floyd EL, Sapag K, Oh J, Lungu CT. Photothermal desorption of single-walled carbon nanotubes and coconut shell-activated carbons using a continuous light source for application in air sampling. Ann Occup Hyg. 2014;58(7):877–888. doi:10.1093/annhyg/meu04325016598
  • Jha PK, Jha RK, Rout D, Gnanasekar S, Rana SV, Hossain M. Potential targetability of multi-walled carbon nanotube loaded with silver nanoparticles photosynthesized from Ocimum tenuiflorum (tulsi extract) in fertility diagnosis. J Drug Target. 2017;25(7):616–625. doi:10.1080/1061186X.2017.130653428294638
  • Azandaryani AH, Kashanian S, Derakhshandeh K. Folate Conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm Res. 2017;34(12):2798–2808. doi:10.1007/s11095-017-2260-x29110284
  • Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2017;271:60–73. doi:10.1016/j.jconrel.2017.12.01629273320
  • Sedki M, Khalil IA, El-Sherbiny IM. Hybrid nanocarrier system for guiding and augmenting simvastatin cytotoxic activity against prostate cancer. Artif Cells Nanomed Biotechnol. 2018;46:1–10.
  • Lim WQ, Phua SZ, Xu HV, Sreejith S, Zhao Y. Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale. 2016;8(25):12510–12519. doi:10.1039/C5NR07853A26750573
  • Zhang J, Han X, Li X, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomed. 2012;7:4299–4310. doi:10.2147/IJN.S32385
  • Stanley S. Biological nanoparticles and their influence on organisms. Curr Opin Biotechnol. 2014;28:69–74. doi:10.1016/j.copbio.2013.11.01424832077
  • Loredo-Tovias M, Duran-Meza AL, Villagrana-Escareño MV, et al. Encapsidated ultrasmall nanolipospheres as novel nanocarriers for highly hydrophobic anticancer drugs. Nanoscale. 2017;9(32):11625–11631. doi:10.1039/C7NR02118F28770909
  • Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–599. doi:10.1016/j.tibtech.2016.02.00626944794
  • Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;3(13):1–13.23355975
  • Shukla S, Wen AM, Ayat NR, et al. Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine. 2014;9(2):221–235. doi:10.2217/nnm.13.7523834501
  • Wen AM, Lee KL, Yildiz I, Bruckman MA, Shukla S, Steinmetz NF. Viral nanoparticles for in vivo tumor imaging. J Vis Exp. 2012;69:1–12.
  • Leong HS, Steinmetz NF, Ablack A, et al. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc. 2010;5(8):1406–1417. doi:10.1038/nprot.2010.10320671724
  • Lee KL, Murray AA, Le DH, et al. Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett. 2017;17(7):4019–4028. doi:10.1021/acs.nanolett.7b0010728650644
  • Badri Narayanan K, Soo Han S. Genetic modifications of icosahedral plant virus-based nanoparticles for vaccine and immunotherapy applications. Curr Protein Pept Sci. 2017;18(11):1141–1151. doi:10.2174/138920371866617042415310928440187
  • Qi J, Zhuang J, Wu W, et al. Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A. Int J Nanomed. 2011;6:985–991. doi:10.2147/IJN.S18821
  • Bhargava K, Conti DS, da Rocha SR, Zhang Y. Application of an oregano oil nanoemulsion to the control of food-borne bacteria on fresh lettuce. Food Microbiol. 2015;47:69–73. doi:10.1016/j.fm.2014.11.00725583339
  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015;6:286. doi:10.3389/fphar.2015.0028626648870
  • Hsu CY, Wang PW, Alalaiwe A, Lin ZC, Fang JY, Use of lipid Nanocarriers to improve Oral delivery of vitamins. Nutrients 2019;11(1):68–97.
  • Agnihotri N, Soni GC, Chanchal DK, Tiwari S, Fang JY, A Scientific Review On Nanoemulsion For Targeting Drug Delivery System. Int J Life Sci Rev. 2019;5(2):16–29.
  • Hérault N, Wagner J, Abram SL, et al. Silver-Containing Titanium Dioxide Nanocapsules for Combating Multidrug-Resistant Bacteria. Int J Nanomed. 2020;15:1267–1281.
  • Dou XQ, Wang H, Zhang J, Aptamer–drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int J Nanomed. 2018;13:763–776.
  • Kevadiya BD, Chen L, Zhang L, Thomas MB, Davé RN, et al. Fenofibrate Nanocrystal Composite Microparticles for Intestine-Specific Oral Drug Delivery System. Pharmaceuticals. 2019;12(3):109–124.
  • Quan G, Niu B, Singh V, et al. Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. Int J Nanomed. 2017;12:8801–8811.
  • Lee JW, Lee HY, Park SH, et al. Preparation and evaluation of dexamethasone-loaded electrospun nanofiber sheets as a sustained drug delivery system. Materials. 2016;9(3):175–186.
  • Jin X, Zhang ZH, Sun E, et al. Enhanced oral absorption of 20 (S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies. Int J Nanomed. 2013;8:641–652.
  • Safer AM, Leporatti S, Jose J, Soliman MS, et al. Conjugation Of EGCG And Chitosan NPs As A Novel Nano-Drug Delivery System. Int J Nanomed. 2019;14:8033–8046.
  • Muhammad Mailafiya M, Abubakar K, Danmaigoro A, et al. Cockle Shell-Derived Calcium Carbonate (Aragonite) Nanoparticles: A Dynamite to Nanomedicine. Appl Sci. 2019;9(14):2897–2922.
  • Kamal N, Kochkodan V, Zekri A, Ahzi S et al. Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties. Membranes 2020;10(1):2–29.