235
Views
19
CrossRef citations to date
0
Altmetric
Review

Recent Progress of Nanoscale Metal-Organic Frameworks in Cancer Theranostics and the Challenges of Their Clinical Application

, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10195-10207 | Published online: 03 Jan 2020

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi:10.3322/caac.2138728055103
  • Zhao X, Yang CX, Chen LG, Yan XP. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat Commun. 2017;8:14998. doi:10.1038/ncomms1499828524865
  • Bai J, Jia X, Zhen W, Cheng W, Jiang X. A facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranostics. J Am Chem Soc. 2018;140(1):106–109. doi:10.1021/jacs.7b1111429268612
  • Ng KK, Lovell JF, Zheng G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc Chem Res. 2011;44(10):1105–1113. doi:10.1021/ar200017e21557543
  • Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Metal-organic frameworks as platforms for functional materials. Acc Chem Res. 2016;49(3):483–493. doi:10.1021/acs.accounts.5b0053026878085
  • Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44(10):957–968. doi:10.1021/ar200028a21648429
  • He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115(19):11079–11108. doi:10.1021/acs.chemrev.5b0012526312730
  • Li S, Huo F. Metal-organic framework composites: from fundamentals to applications. Nanoscale. 2015;7(17):7482–7501. doi:10.1039/C5NR00518C25871946
  • Wang Z, Cohen SM. Postsynthetic modification of metal-organic frameworks. Chem Soc Rev. 2009;38(5):1315–1329. doi:10.1039/b802258p19384440
  • Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT. Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc Chem Res. 2017;50(4):805–813. doi:10.1021/acs.accounts.6b0057728177217
  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–12364. doi:10.1002/anie.20140303625294565
  • Lu K, Aung T, Guo N, Weichselbaum R, Lin W. nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. 2018;30(37):e1707634. doi:10.1002/adma.v30.3729971835
  • Chen F, Hong H, Zhang Y, et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013;7(10):9027–9039. doi:10.1021/nn403617j24083623
  • Chen W, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem Sci. 2017;8(8):5769–5780. doi:10.1039/C7SC01765K28989617
  • Kahn JS, Freage L, Enkin N, Garcia MA, Willner I. Stimuli-responsive DNA-functionalized metal-organic frameworks (MOFs). Adv Mater. 2017;29(6). doi:10.1002/adma.201602782
  • Tan LL, Li H, Qiu YC, et al. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches. Chem Sci. 2015;6(3):1640–1644. doi:10.1039/C4SC03749A30154997
  • Chen WH, Yang Sung S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal-organic framework nanoparticles. Nanoscale. 2018;10(10):4650–4657. doi:10.1039/C8NR00193F29465130
  • Park J, Jiang Q, Feng D, Mao L, Zhou HC. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc. 2016;138(10):3518–3525. doi:10.1021/jacs.6b0000726894555
  • Gao X, Zhai M, Guan W, Liu J, Liu Z, Damirin A. Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl Mater Interfaces. 2017;9(4):3455–3462. doi:10.1021/acsami.6b1479528079361
  • Wang GD, Chen H, Tang W, Lee D, Xie J. Gd and Eu Co-doped nanoscale metal-organic framework as a T1-T2 dual-modal contrast agent for magnetic resonance imaging. Tomography. 2016;2(3):179–187.30042963
  • Yang Y, Liu J, Liang C, et al. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano. 2016;10(2):2774–2781. doi:10.1021/acsnano.5b0788226799993
  • Ray BD, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 2016;45(7):2963–2973. doi:10.1039/C5DT03736K26754449
  • Qin L, Sun ZY, Cheng K, et al. Zwitterionic manganese and gadolinium metal-organic frameworks as efficient contrast agents for in vivo magnetic resonance imaging. ACS Appl Mater Interfaces. 2017;9(47):41378–41386. doi:10.1021/acsami.7b0960829144731
  • Cai W, Gao H, Chu C, et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces. 2017;9(3):2040–2051. doi:10.1021/acsami.6b1157928032505
  • Zhang H, Tian XT, Shang Y, Li YH, Yin XB. Theranostic Mn-porphyrin metal-organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy. ACS Appl Mater Interfaces. 2018;10(34):28390–28398. doi:10.1021/acsami.8b0968030066560
  • Lin J, Xin P, An L, et al. Fe3O4-ZIF-8 assemblies as pH and glutathione responsive T2-T1 switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem Commun (Camb). 2019;55(4):478–481. doi:10.1039/C8CC08943D30547169
  • Liu M, Wang L, Zheng X, Liu S, Xie Z. Hypoxia-triggered nanoscale metal-organic frameworks for enhanced anticancer activity. ACS Appl Mater Interfaces. 2018;10(29):24638–24647. doi:10.1021/acsami.8b0757029957930
  • Shang W, Zeng C, Du Y, et al. Core-Shell Gold Nanorod@Metal-organic framework nanoprobes for multimodality diagnosis of glioma. Adv Mater. 2017;29(3):1604381. doi:10.1002/adma.v29.3
  • Zhang H, Shang Y, Li YH, Sun SK, Yin XB. Smart metal-organic framework-based nanoplatforms for imaging-guided precise chemotherapy. ACS Appl Mater Interfaces. 2019;11(2):1886–1895. doi:10.1021/acsami.8b1904830584757
  • Chen D, Yang D, Dougherty CA, et al. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano. 2017;11(4):4315–4327. doi:10.1021/acsnano.7b0153028345871
  • Chowdhuri AR, Singh T, Ghosh SK, Sahu SK. Carbon dots embedded magnetic nanoparticles @Chitosan @metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces. 2016;8(26):16573–16583. doi:10.1021/acsami.6b0398827305490
  • Liu W, Wang YM, Li YH, et al. Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal-organic framework. Small. 2017;13(17).
  • Ryu U, Yoo J, Kwon W, Choi KM. Tailoring nanocrystalline metal-organic frameworks as fluorescent dye carriers for bioimaging. Inorg Chem. 2017;56(21):12859–12865. doi:10.1021/acs.inorgchem.7b0168429028316
  • Zhang R, Qiao C, Jia Q, et al. Highly stable and long-circulating metal-organic frameworks nanoprobes for sensitive tumor detection in vivo. Adv Healthc Mater. 2019;8(19):e1900761. doi:10.1002/adhm.v8.1931368240
  • Li Y, Tang J, He L, et al. Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv Mater. 2015;27(27):4075–4080. doi:10.1002/adma.20150177926053933
  • Rieter WJ, Taylor KM, An H, Lin W, Lin W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc. 2006;128(28):9024–9025. doi:10.1021/ja062744416834362
  • Ju Y, Zhang H, Yu J, et al. Monodisperse Au-Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano. 2017;11(9):9239–9248. doi:10.1021/acsnano.7b0446128850218
  • deKrafft KE, Xie Z, Cao G, et al. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography. Angew Chem Int Ed Engl. 2009;48(52):9901–9904. doi:10.1002/anie.v48:5219937883
  • Kattumuri V, Katti K, Bhaskaran S, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007;3(2):333–341. doi:10.1002/(ISSN)1613-682917262759
  • Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661–7665. doi:10.1021/ja071471p17530850
  • Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev. 2014;76:2–20. doi:10.1016/j.addr.2014.07.01125086372
  • Ni K, Lan G, Veroneau SS, Duan X, Song Y, Lin W. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat Commun. 2018a;9(1):4321. doi:10.1038/s41467-018-06655-730333489
  • Lan G, Ni K, Veroneau SS, Luo T, You E, Lin W. Nanoscale metal-organic framework hierarchically combines high-Z components for multifarious radio-enhancement. J Am Chem Soc. 2019;141(17):6859–6863. doi:10.1021/jacs.9b0302930998341
  • Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–2819. doi:10.1021/nn406590q24506773
  • Filippousi M, Turner S, Leus K, et al. Biocompatible Zr-based nanoscale MOFs coated with modified poly(epsilon-caprolactone) as anticancer drug carriers. Int J Pharm. 2016;509(1–2):208–218. doi:10.1016/j.ijpharm.2016.05.04827235556
  • Li Y, Zhao XD, Yin HP, Chen GJ, Yang S, Dong YB. A drug-loaded nanoscale metal-organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chem Commun (Camb). 2016;52(98):14113–14116. doi:10.1039/C6CC07321B27858003
  • Chowdhuri AR, Laha D, Pal S, Karmakar P, Sahu SK. One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Trans. 2016;45(45):18120–18132. doi:10.1039/C6DT03237K27785489
  • Zhou W, Wang L, Li F, et al. Selenium-containing polymer@metal-organic frameworks nanocomposites as an efficient multiresponsive drug delivery system. Adv Funct Mater. 2017;27(6):1605465. doi:10.1002/adfm.201605465
  • Samanta D, Roy S, Sasmal R, et al. Solvent adaptive dynamic metal-organic soft hybrid for imaging and biological delivery. Angew Chem Int Ed Engl. 2019;58(15):5008–5012. doi:10.1002/anie.20190069230741500
  • Samui A, Pal K, Karmakar P, Sahu SK. In situ synthesized lactobionic acid conjugated NMOFs, a smart material for imaging and targeted drug delivery in hepatocellular carcinoma. Mater Sci Eng C Mater Biol Appl. 2019;98:772–781. doi:10.1016/j.msec.2019.01.03230813083
  • Lu K, He C, Lin W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J Am Chem Soc. 2014;136(48):16712–16715. doi:10.1021/ja508679h25407895
  • Lu K, He C, Lin W. A chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J Am Chem Soc. 2015;137(24):7600–7603. doi:10.1021/jacs.5b0406926068094
  • Zhang L, Lei J, Ma F, Ling P, Liu J, Ju H. A porphyrin photosensitized metal-organic framework for cancer cell apoptosis and caspase responsive theranostics. Chem Commun (Camb). 2015;51(54):10831–10834. doi:10.1039/C5CC03028E26051476
  • Ma Y, Li X, Li A, Yang P, Zhang C, Tang B. H2 S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew Chem Int Ed Engl. 2017;56(44):13752–13756. doi:10.1002/anie.20170800528856780
  • Chen R, Zhang J, Chelora J, et al. Ruthenium(II) complex incorporated UiO-67 metal-organic framework nanoparticles for enhanced two-photon fluorescence imaging and photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9(7):5699–5708. doi:10.1021/acsami.6b1246928121418
  • Kan JL, Jiang Y, Xue A, et al. Surface decorated porphyrinic nanoscale metal-organic framework for photodynamic therapy. Inorg Chem. 2018;57(9):5420–5428. doi:10.1021/acs.inorgchem.8b0038429664624
  • Zhou LL, Guan Q, Li YA, Zhou Y, Xin YB, Dong YB. One-pot synthetic approach toward porphyrinatozinc and heavy-atom involved Zr-NMOF and its application in photodynamic therapy. Inorg Chem. 2018;57(6):3169–3176. doi:10.1021/acs.inorgchem.7b0320429488754
  • Zhang Y, Wang F, Liu C, et al. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano. 2018;12(1):651–661. doi:10.1021/acsnano.7b0774629290107
  • Jia J, Zhang Y, Zheng M, et al. Functionalized Eu(III)-based nanoscale metal-organic framework to achieve near-IR-triggered and -targeted two-photon absorption photodynamic therapy. Inorg Chem. 2018;57(1):300–310. doi:10.1021/acs.inorgchem.7b0247529220150
  • Lan G, Ni K, Veroneau SS, et al. Titanium-based nanoscale metal-organic framework for type I photodynamic therapy. J Am Chem Soc. 2019;141(10):4204–4208. doi:10.1021/jacs.8b1380430779556
  • Ma YC, Zhu YH, Tang XF, et al. Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy. Biomater Sci. 2019;7(7):2740–2748. doi:10.1039/C9BM00333A30994642
  • Wang H, Yu D, Fang J, et al. Renal-clearable porphyrinic metal-organic framework nanodots for enhanced photodynamic therapy. ACS Nano. 2019;13(8):9206–9217. doi:10.1021/acsnano.9b0353131408319
  • Wang W, Wang L, Li Y, Liu S, Xie Z, Jing X. Nanoscale polymer metal-organic framework hybrids for effective photothermal therapy of colon cancers. Adv Mater. 2016;28(42):9320–9325. doi:10.1002/adma.20160299727573036
  • Yan H, Ni H, Jia J, et al. Smart all-in-one thermometer-heater nanoprobe based on postsynthetical functionalization of a Eu(III)-metal-organic framework. Anal Chem. 2019;91(8):5225–5234. doi:10.1021/acs.analchem.8b0596030905160
  • Skliarenko J, Warde P. Practical and clinical applications of radiation therapy. Medicine. 2016;44(1):15–19. doi:10.1016/j.mpmed.2015.10.016
  • Liu J, Yang Y, Zhu W, et al. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials. 2016;97:1–9. doi:10.1016/j.biomaterials.2016.04.03427155362
  • Illes B, Wuttke S, Engelke H. Liposome-coated iron fumarate metal-organic framework nanoparticles for combination therapy. Nanomaterials. 2017;7(11):351. doi:10.3390/nano7110351
  • He C, Lu K, Liu D, Lin W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc. 2014;136(14):5181–5184. doi:10.1021/ja409886224669930
  • Zhang FM, Dong H, Zhang X, et al. Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl Mater Interfaces. 2017;9(32):27332–27337. doi:10.1021/acsami.7b0845128745483
  • Zeng Y, Zhang D, Wu M, et al. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces. 2014;6(16):14266–14277. doi:10.1021/am503583s25090604
  • Dong Z, Feng L, Hao Y, et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J Am Chem Soc. 2018;140(6):2165–2178. doi:10.1021/jacs.7b1103629376345
  • Qiu WX, Liu LH, Li SY, Lei Q, Luo GF, Zhang XZ. ACPI conjugated gold nanorods as nanoplatform for dual image guided activatable photodynamic and photothermal combined therapy in vivo. Small. 2017;13(18). doi:10.1002/smll.201603956
  • Guo T, Wu Y, Lin Y, et al. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small. 2018;14(4).
  • Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112(2):1232–1268. doi:10.1021/cr200256v22168547
  • Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869–10939. doi:10.1021/cr400532z25260098
  • Morris W, Briley WE, Auyeung E, Cabezas MD, Mirkin CA. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J Am Chem Soc. 2014;136(20):7261–7264. doi:10.1021/ja503215w24818877
  • Chen Q, Xu M, Zheng W, Xu T, Deng H, Liu J. Se/Ru-decorated porous metal-organic framework nanoparticles for the delivery of pooled sirnas to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl Mater Interfaces. 2017;9(8):6712–6724. doi:10.1021/acsami.6b1279228191840
  • Chen W, Luo GF, Sohn YS, Nechushtai R, Willner I. miRNA-specific unlocking of drug-loaded metal-organic framework nanoparticles: targeted cytotoxicity toward cancer cells. Small. 2019;15(17):e1900935.30920730
  • Wu Y, Han J, Xue P, Xu R, Kang Y. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale. 2015;7(5):1753–1759. doi:10.1039/C4NR05447D25514895
  • Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314. doi:10.1146/annurev-pathol-012513-10471524079833
  • Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Kerin MJ. MicroRNAs as novel biomarkers for breast cancer. J Oncol. 2009;2009:950201.19639033
  • Hoheisel J, Dahiya N, Sherman-Baust CA, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One. 2008;3(6):e2436. doi:10.1371/journal.pone.000243618560586
  • Fan W, Yung BC, Chen X. Stimuli-responsive NO release for on-demand gas-sensitized synergistic cancer therapy. Angew Chem Int Ed Engl. 2018;57(28):8383–8394. doi:10.1002/anie.v57.2829517844
  • Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev. 2007;27(3):317–352. doi:10.1002/(ISSN)1098-112816991100
  • McKinlay AC, Xiao B, Wragg DS, Wheatley PS, Megson IL, Morris RE. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J Am Chem Soc. 2008;130(31):10440–10444. doi:10.1021/ja801997r18627150
  • Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–38043. doi:10.18632/oncotarget.1672328410237
  • Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc. 2018;140(17):5670–5673. doi:10.1021/jacs.8b0107229665677
  • Lu K, He C, Guo N, et al. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc. 2016;138(38):12502–12510. doi:10.1021/jacs.6b0666327575718
  • Zeng JY, Zou MZ, Zhang M, et al. pi-extended benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis. ACS Nano. 2018;12(5):4630–4640. doi:10.1021/acsnano.8b0118629584395
  • Song W, Kuang J, Li CX, et al. Enhanced immunotherapy based on photodynamic therapy for both primary and lung metastasis tumor eradication. ACS Nano. 2018;12(2):1978–1989. doi:10.1021/acsnano.7b0911229420012
  • Ni K, Lan G, Chan C, et al. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun. 2018;9(1):2351.29907739
  • Lu K, He C, Guo N, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng. 2018;2(8):600–610. doi:10.1038/s41551-018-0203-431015630
  • Li Y, Di Z, Gao J, et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J Am Chem Soc. 2017;139(39):13804–13810. doi:10.1021/jacs.7b0730228899098
  • Rengaraj A, Puthiaraj P, Heo NS, et al. Porous NH2-MIL-125 as an efficient nano-platform for drug delivery, imaging, and ROS therapy utilized low-intensity visible light exposure system. Colloids Surf B Biointerfaces. 2017;160:1–10. doi:10.1016/j.colsurfb.2017.09.01128910676
  • He Z, Dai Y, Li X, et al. Hybrid nanomedicine fabricated from photosensitizer-terminated metal-organic framework nanoparticles for photodynamic therapy and hypoxia-activated cascade chemotherapy. Small. 2019;15(4):e1804131. doi:10.1002/smll.20180413130565431
  • He J, Dong J, Hu Y, Li G, Hu Y. Design of Raman tag-bridged core-shell Au@Cu3(BTC)2 nanoparticles for Raman imaging and synergistic chemo-photothermal therapy. Nanoscale. 2019;11(13):6089–6100. doi:10.1039/C9NR00041K30869726
  • Zeng JY, Zhang MK, Peng MY, Gong D, Zhang XZ. Porphyrinic metal–organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic: photothermal: chemotherapy of tumor. Adv Funct Mater. 2017;201705451:1–13.
  • Xu J, Wang XF, Chen P, et al. RNA interference in moths: mechanisms, applications, and progress. Genes (Basel). 2016;7(10):88. doi:10.3390/genes7100088
  • Xiong XB, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano. 2011;5(6):5202–5213. doi:10.1021/nn201370721627074
  • Shahzad MM, Lopez-Berestein G, Sood AK. Novel strategies for reversing platinum resistance. Drug Resist Updat. 2009;12(6):148–152. doi:10.1016/j.drup.2009.09.00119805003
  • Yellepeddi VK, Vangara KK, Kumar A, Palakurthi S. Comparative evaluation of small-molecule chemosensitizers in reversal of cisplatin resistance in ovarian cancer cells. Anticancer Res. 2012;32(9):3651–3658.22993302
  • Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42(10):1524–1533. doi:10.1016/j.freeradbiomed.2007.02.01317448899
  • Levina A, Mitra A, Lay PA. Recent developments in ruthenium anticancer drugs. Metallomics. 2009;1(6):458–470. doi:10.1039/b904071d21305154
  • Hsu HW, Wall NR, Hsueh CT, et al. Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol. 2014;50(1):19–26. doi:10.1016/j.oraloncology.2013.10.00324269532
  • Iwamoto Y, Ishii K, Kanda H, et al. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J Cancer Res Clin Oncol. 2017;143(6):933–939. doi:10.1007/s00432-017-2367-928243746