317
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Superiority of L-tartaric Acid Modified Chiral Mesoporous Silica Nanoparticle as a Drug Carrier: Structure, Wettability, Degradation, Bio-Adhesion and Biocompatibility

, , , &
Pages 601-618 | Published online: 29 Jan 2020

References

  • Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018;8(2):165–177. doi:10.1016/j.apsb.2018.01.00729719777
  • Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater. 2018;7(4):1700831.
  • Zhou HP, Gao SM, Zhang WW, An ZH, Chen DH. Dynamic adsorption of toluene on amino-functionalized SBA-15 type spherical mesoporous silica. RSC Adv. 2019;9(13):7196–7202. doi:10.1039/C8RA08605B
  • Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N. A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev. 2018;45(2):281–322.
  • Perez RA, Singh RK, Kim TH, Kim HW. Silica-based multifunctional nanodelivery systems toward regenerative medicine. Mater Horiz. 2017;4:772–799. doi:10.1039/C7MH00017K
  • Moodley T, Singh M. Polymeric mesoporous silica nanoparticles for enhanced delivery of 5-fluorouracil1n vitro. Pharmaceutics. 2019;11(6):288–308. doi:10.3390/pharmaceutics11060288
  • Wei Y, Gao L, Wang L, et al. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 2017;24(1):681–691. doi:10.1080/10717544.2017.130947528414557
  • Zhang W, Zheng N, Chen L, et al. Effect of shape on mesoporous silica nanoparticles for oral delivery of indomethacin. Pharmaceutics. 2019;11:4–16. doi:10.3390/pharmaceutics11010004
  • Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol. 2015;11(2):313–327. doi:10.1016/j.nano.2014.09.014
  • Zheng N, Li J, Xu C, Xu L, Li S, Xu L. Mesoporous silica nanorods for improved oral drug absorption. Artif Cell Nanomed B. 2018;46(6):1132–1140. doi:10.1080/21691401.2017.1362414
  • Li J, Xu L, Wang HY, et al. Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: superiority of amino modification. Mat Sci Eng C. 2016;59:710–716. doi:10.1016/j.msec.2015.10.072
  • Sun XX, Wang N, Yang LY, Ouyang XK, Huang FF. Folic acid and PEI modified mesoporous silica for targeted delivery of curcumin. Pharmaceutics. 2019;11(9):430. doi:10.3390/pharmaceutics11090430
  • Sohmiya M, Saito K, Ogawa M. Host–guest chemistry of mesoporous silicas: precise design of location, density and orientation of molecular guests in mesopores. Sci Technol Adv Mat. 2015;16(5):054201. doi:10.1088/1468-6996/16/5/054201
  • Adrian S, Magdalena P. Amino-modified mesoporous silica SBA-15 as bifunctional drug delivery system for cefazolin: release profile and mineralization potential. Mater Lett. 2018;227:136–140. doi:10.1016/j.matlet.2018.05.059
  • Qiu L, Zhang W, Wang S, et al. Construction of multifunctional porous silica nanocarriers for ph/enzyme-responsive drug release. Mat Sci Eng C. 2017;81:485–491. doi:10.1016/j.msec.2017.08.029
  • Li H, Wu X, Yang B, et al. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: structure, wettability, degradation, biocompatibility and brain distribution. Mat Sci Eng C. 2019;94:453–464. doi:10.1016/j.msec.2018.09.053
  • Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5(12):1408–1413. doi:10.1002/smll.20090000519296554
  • Li L, Liu T, Fu C, Tan L, Meng X, Liu H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomed Nanotechnol. 2015;11(8):1915–1924. doi:10.1016/j.nano.2015.07.004
  • Kim I, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed Nanotechnol. 2015;11(6):1407–1416. doi:10.1016/j.nano.2015.03.004
  • Wang Y, Li W, Liu T, et al. Design and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. Mat Sci Eng C. 2019;103:109737. doi:10.1016/j.msec.2019.109737
  • Li H, Li H, Wei C, Ke J, Li J, Xu L. Biomimetic synthesis and evaluation of histidine-derivative templated chiral mesoporous silica for improved oral delivery of the poorly water-soluble drug, nimodipine. Eur J Pharm Sci. 2018;117:321–330. doi:10.1016/j.ejps.2018.03.01329530545
  • Li J, Xu L, Yang B, et al. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug. Int J Pharm. 2015;492(1–2):191–198. doi:10.1016/j.ijpharm.2015.07.01426163764
  • Li J, Du X, Zheng N, Xu L, Xu J, Li S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: ph-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloid Surface B. 2016;141:374–381. doi:10.1016/j.colsurfb.2016.02.009
  • Ran F, Lei W, Cui Y, et al. Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. J Colloid Interf Sci. 2017;511:57–66. doi:10.1016/j.jcis.2017.09.088
  • Manne B, Thiruvayapati H, Bontha S, Motagondanahalli Rangarasaiah R, Das M, Balla VK. Surface design of mg-zn alloy temporary orthopaedic implants: tailoring wettability and biodegradability using laser surface melting. Surf Coat Tech. 2018;347:337–349. doi:10.1016/j.surfcoat.2018.05.017
  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH. Engineered antifouling microtopographies-correlating wettability with cell attachment. Biofouling. 2006;22(1):11–21. doi:10.1080/0892701050048485416551557
  • Tao S, Wang Y. Synthesis of hierarchically porous silica film with controllable surface wettability. Int Nano Lett. 2014;4(1):1–5. doi:10.1007/s40089-014-0102-y
  • Zhu R, Wang Y, Zhang Z, Ma D, Wang X. Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties. Heliyon. 2016;2(6):e00125. doi:10.1016/j.heliyon.2016.e0012527441296
  • He Q, Shi J, Zhu M, Chen Y, Chen F. The three-stage in vitro, degradation behavior of mesoporous silica in simulated body fluid. Micropor Mesopor Mat. 2010;131(1–3):314–320. doi:10.1016/j.micromeso.2010.01.009
  • Parale VG, Mahadik DB, Mahadik SA, Kavale MS, Venkateswara Rao A, Wagh PB. Wettability study of surface modified silica aerogels with different silylating agents. J Sol-Gel Sci Techn. 2012;63(3):573–579. doi:10.1007/s10971-012-2788-5
  • Singh A, Worku ZA, Guy VDM. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Del. 2011;8(10):1361–1378. doi:10.1517/17425247.2011.606808
  • Wang Y, Zhao Y, Cui Y, et al. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomater. 2018;65:405–416. doi:10.1016/j.actbio.2017.10.02529037897
  • Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–2575. doi:10.1016/j.biomaterials.2012.12.04323332175
  • Greish K, Thiagarajan G, Herd H, et al. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology. 2012;6(7):713–723. doi:10.3109/17435390.2011.60444221793770
  • Yu T, Greish K, Mcgill LD, Ray A, Ghandehari H. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano. 2012;6(3):2289–2301. doi:10.1021/nn204380322364198
  • Lankoff A, Arabski M, Wegierek-Ciuk A, et al. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology. 2013;7(3):235–250. doi:10.3109/17435390.2011.64979622264124
  • Yang Y, Zhou J, Detsch R, et al. Biodegradable nanostructures: degradation process and biocompatibility of iron oxide nanostructured arrays. Mat Sci Eng C. 2018;85:203–213. doi:10.1016/j.msec.2017.12.021
  • Gang X, Qian W, Zhang T, Yang X, Xia Q, Cheng D. Aurora b kinase is required for cell cycle progression in silkworm. Gene. 2017;599:60–67. doi:10.1016/j.gene.2016.11.01527836666
  • Menti C, Beltrami M, Possan AL, Martins ST, Roesch-Ely M. Biocompatibility and degradation of gold-covered magneto-elastic biosensors exposed to cell culture. Colloid Surface B. 2016;143:111–117. doi:10.1016/j.colsurfb.2016.03.034
  • Zhen Z, Liu X, Huang T, Xi TF, Zheng Y. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mat Sci Eng C. 2015;46:202–206. doi:10.1016/j.msec.2014.08.038
  • Dam DHM, Culver KSB, Kandela I, et al. Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars. Nanomed Nanotechnol. 2015;11(3):671–679. doi:10.1016/j.nano.2014.10.005
  • Yu Q, Xiong XQ, Zhao L, et al. Biodistribution and toxicity assessment of superparamagnetic iron oxide nanoparticles in vitro and in vivo. Curr Med Sci. 2018;38(6):1096–1102. doi:10.1007/s11596-018-1989-830536075
  • Caster JM, Yu SK, Patel AN, et al. Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles in chemoradiotherapy. Nanomed Nanotechnol. 2017;13(5):1673–1683. doi:10.1016/j.nano.2017.03.002
  • Samat S, Nor NA, Nor F, Ismail WI. Effects of gelam and acacia honey acute administration on some biochemical parameters of sprague dawley rats. BMC Complement Altern Me. 2014;14(1):146. doi:10.1186/1472-6882-14-146