2,984
Views
194
CrossRef citations to date
0
Altmetric
Review

Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications

, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 275-300 | Published online: 16 Jan 2020

References

  • Abou El-Nour KMM, Eftaiha AA, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3(3):135–140. doi:10.1016/j.arabjc.2010.04.008
  • Xie T, Zhang L, Wang Y, Wang Y, Wang X. Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceram Int. 2019;45(2):2516–2520. doi:10.1016/j.ceramint.2018.10.181
  • Sadjadi S, Malmir M, Heravi MM. A novel magnetic heterogeneous catalyst based on decoration of halloysite with ionic liquid-containing dendrimer. Appl Clay Sci. 2019;168:184–195. doi:10.1016/j.clay.2018.11.012
  • Shrivastava S, Jadon N, Jain R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. TrAC Trends Anal Chem. 2016;82:55–67. doi:10.1016/j.trac.2016.04.005
  • Jahangirian H, Lemraski EG, Rafiee-Moghaddam R, Webster TJ. A review of using green chemistry methods for biomaterials in tissue engineering. Int J Nanomed. 2018;13:5953. doi:10.2147/IJN
  • Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441–453. doi:10.1002/bit.2516024264728
  • Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med. 2010;6(2):257–262. doi:10.1016/j.nano.2009.07.002
  • Alam MN, Das S, Batuta S, et al. Murraya koenegii spreng. leaf extract: an efficient green multifunctional agent for the controlled synthesis of Au nanoparticles. ACS Sustain Chem Eng. 2014;2(4):652–664. doi:10.1021/sc400562w
  • Sasidharan S, Raj S, Sonawane S, Pinjari D, Pandit AB, Saudagar P. Nanomaterial synthesis: chemical and biological route and applications In: Nanomaterials Synthesis. Elsevier; 2019:27–51.
  • Deepak P, Amutha V, Kamaraj C, Balasubramani G, Aiswarya D, Perumal P. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; 2019:369–387.
  • Wang S, Huang P, Chen X. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv Mater. 2016;28(34):7340–7364. doi:10.1002/adma.20160149827255214
  • Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed. 2017;12:2957. doi:10.2147/IJN
  • Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017;117(22):13566–13638. doi:10.1021/acs.chemrev.7b0025829048884
  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019;48(14):3683–3704.31119258
  • Rad AG, Abbasi H, Afzali MH. Gold nanoparticles: synthesising, characterizing and reviewing novel application in recent years. Phys Procedia. 2011;22:203–208. doi:10.1016/j.phpro.2011.11.032
  • Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–1315. doi:10.1016/j.addr.2008.03.01618555555
  • Karuppiah C, Palanisamy S, Chen S-M, Emmanuel R, Muthupandi K, Prakash P. Green synthesis of gold nanoparticles and its application for the trace level determination of painter’s colic. RSC Adv. 2015;5(21):16284–16291. doi:10.1039/C4RA14988B
  • Shahzad SA, Sajid MA, Khan ZA, Canseco-Gonzalez D. Gold catalysis in organic transformations: a review. Synth Commun. 2017;47(8):735–755. doi:10.1080/00397911.2017.1280508
  • Islam NU, Jalil K, Shahid M, et al. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. 2015.
  • Abbasi T, Anuradha J, Ganaie SU, Abbasi SA. Biomimetic synthesis of nanoparticles using aqueous extracts of plants (botanical species). J Nano Res. 2015;31:138–202. doi:10.4028/www.scientific.net/JNanoR.31
  • Shah R, Oza G, Pandey S, Sharon M. Biogenic fabrication of gold nanoparticles using halomonas salina. J Microbiol Biotechnol. 2012;2(4):485–492.
  • Siddiqi KS, Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol. 2016.
  • Teimuri-Mofrad R, Hadi R, Tahmasebi B, Farhoudian S, Mehravar M, Nasiri R. Green synthesis of gold nanoparticles using plant extract: mini-review. Nanochem Res. 2017;2(1):8–19.
  • Bogireddy N, Pal U, Gomez LM, Agarwal V. Size controlled green synthesis of gold nanoparticles using coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction. RSC Adv. 2018;8(44):24819–24826. doi:10.1039/C8RA04332A
  • Dash SS, Bag BG, Hota P. Lantana camara linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity. Appl Nanosci. 2014;5(3):343–350. doi:10.1007/s13204-014-0323-4
  • Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871–1880. doi:10.1039/C1NR11188D22076024
  • Lee KX, Shameli K, Miyake M, et al. Gold nanoparticles biosynthesis: a simple route for control size using waste peel extract. IEEE Trans Nanotechnol. 2017;16(6):954–957. doi:10.1109/TNANO.2017.2728600
  • Kumar B, Smita K, Cumbal L, Debut A. Extracellular biofabrication of gold nanoparticles by using lantana camara berry extract. Inorg Nano-Metal Chem. 2017;47(1):138–142. doi:10.1080/15533174.2016.1157817
  • Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13–28. doi:10.1016/j.jare.2010.02.002
  • Singh P, Pandit S, Garnæs J, et al. Green synthesis of gold and silver nanoparticles from cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomed. 2018;13:3571. doi:10.2147/IJN.S157958
  • Kim H-S, Seo YS, Kim K, Han JW, Park Y, Cho S. Concentration effect of reducing agents on green synthesis of gold nanoparticles: size, morphology, and growth mechanism. Nanoscale Res Lett. 2016;11(1):230. doi:10.1186/s11671-016-1393-x27119158
  • Yuan C-G, Huo C, Yu S, Gui B. Biosynthesis of gold nanoparticles using capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E. 2017;85:19–26. doi:10.1016/j.physe.2016.08.010
  • Anuradha J, Abbasi T, Abbasi S. An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (pistia stratiotes L.). J Adv Res. 2015;6(5):711–720. doi:10.1016/j.jare.2014.03.00627563461
  • González-Ballesteros N, Rodríguez-González J, Rodríguez-Argüelles M. Harnessing the wine dregs: an approach towards a more sustainable synthesis of gold and silver nanoparticles. J Photochem Photobiol B. 2018;178:302–309. doi:10.1016/j.jphotobiol.2017.11.02529175604
  • Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain Chem Eng. 2014;2(7):1717–1723.
  • Gan PP, Ng SH, Huang Y, Li SFY. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol. 2012;113:132–135. doi:10.1016/j.biortech.2012.01.01522297042
  • Sundararajan B, Kumari BR. Novel synthesis of gold nanoparticles using artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector aedes aegypti L. J Trace Elem Med Biol. 2017;43:187–196. doi:10.1016/j.jtemb.2017.03.00828341392
  • Naraginti S, Li Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using actinidia deliciosa. J Photochem Photobiol B. 2017;170:225–234. doi:10.1016/j.jphotobiol.2017.03.02328454046
  • Song JY, Jang H-K, Kim BS. Biological synthesis of gold nanoparticles using magnolia kobus and diopyros kaki leaf extracts. Process Biochem. 2009;44(10):1133–1138. doi:10.1016/j.procbio.2009.06.005
  • Elavazhagan T, Arunachalam KD. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine. 2011;6:1265–1278. doi:10.2147/IJN.S1834721753878
  • Ho C-T. Phenolic Compounds in Food: An Overview. Phenolic Compounds in Food and Their Effects on Health I. Washington: ACS Publications; 1992:2–7.
  • Vijayakumar S, Vaseeharan B, Malaikozhundan B, et al. Therapeutic effects of gold nanoparticles synthesized using musa paradisiaca peel extract against multiple antibiotic resistant enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog. 2017;102:173–183. doi:10.1016/j.micpath.2016.11.02927916691
  • Emmanuel R, Karuppiah C, Chen S-M, Palanisamy S, Padmavathy S, Prakash P. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing methemoglobinaemia. J Hazard Mater. 2014;279:117–124. doi:10.1016/j.jhazmat.2014.06.06625048622
  • Mukherjee S, Sushma V, Patra S, et al. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology. 2012;23(45):455103. doi:10.1088/0957-4484/23/45/45510323064012
  • Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C-Mater Biol Appl. 2015;53:298–309. doi:10.1016/j.msec.2015.04.04826042718
  • Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ. 2016;573:1089–1102. doi:10.1016/j.scitotenv.2016.08.12027639594
  • Noruzi M, Zare D, Khoshnevisan K, Davoodi D. Rapid green synthesis of gold nanoparticles using rosa hybrida petal extract at room temperature. Spectroc Acta Pt A-Molec Biomolec Spectr. 2011;79(5):1461–1465. doi:10.1016/j.saa.2011.05.001
  • Sathiyanarayanan G, Vignesh V, Saibaba G, et al. Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: a novel and greener approach. RSC Adv. 2014;4(43):22817–22827. doi:10.1039/C4RA01428F
  • Mewada A, Oza G, Pandey S, Sharon M. Extracellular synthesis of gold nanoparticles using pseudomonas denitrificans and comprehending its stability. J Microbiol Biotechnol. 2012;2(4):493–499.
  • Wadhwani SA, Shedbalkar UU, Singh R, Karve MS, Chopade BA. Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of acinetobacter sp. SW30. World J Microbiol Biotechnol. 2014;30(10):2723–2731. doi:10.1007/s11274-014-1696-y24980944
  • Dhanasekar N, Rahul G, Narayanan K, Raman G, Sakthivel N. Green chemistry approach for the synthesis of gold nanoparticles using the fungus alternaria sp. J Microbiol Biotechnol. 2015;25(7):1129–1135. doi:10.4014/jmb.1410.1003625737119
  • Babu Maddinedi S, Mandal BK, Ranjan S, Dasgupta N. Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv. 2015;5(34):26727–26733. doi:10.1039/C5RA03117F
  • Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:1–8. doi:10.1155/2011/91053921808638
  • Narayanan KB, Park HH, Han SS. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom flammulina velutipes and its heterogeneous catalytic potential. Chemosphere. 2015;141:169–175. doi:10.1016/j.chemosphere.2015.06.10126207976
  • Narayanan KB, Sakthivel N. Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of sclerotium rolfsii. Colloid Surf A-Physicochem Eng Asp. 2011;380(1):156–161. doi:10.1016/j.colsurfa.2011.02.042
  • Singh J, Kaur G, Kaur P, Bajaj R, Rawat M. A review on grenn synthesis and characteriszation of silver nanoparticles and their applications: a green nanoworld. J Pharm Pharm Sci. 2016;5(7):730–762.
  • Iravani HK, Mirmohammadi S. B Zolfaghari S. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385–406.26339255
  • Bogireddy NKR, Anand KKH, Mandal BK. Gold nanoparticles—synthesis by sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes. J Mol Liq. 2015;211:868–875. doi:10.1016/j.molliq.2015.07.027
  • Patil MP, Kim G-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101(1):79–92. doi:10.1007/s00253-016-8012-827915376
  • Zadernowski R, Czaplicki S, Naczk M. Phenolic acid profiles of mangosteen fruits (garcinia mangostana). Food Chem. 2009;112(3):685–689. doi:10.1016/j.foodchem.2008.06.030
  • Gopinath K, Venkatesh K, Ilangovan R, Sankaranarayanan K, Arumugam A. Green synthesis of gold nanoparticles from leaf extract of terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind Crops Prod. 2013;50:737–742. doi:10.1016/j.indcrop.2013.08.060
  • Arunachalam KD, Annamalai SK, Hari S. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from memecylon umbellatum. Int J Nanomed. 2013;8:1307. doi:10.2147/IJN
  • Khalil MM, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem. 2012;5(4):431–437. doi:10.1016/j.arabjc.2010.11.011
  • Kumar VG, Gokavarapu SD, Rajeswari A, et al. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent cassia auriculata. Colloid Surf B-Biointerfaces. 2011;87(1):159–163. doi:10.1016/j.colsurfb.2011.05.016
  • Philip D. Rapid green synthesis of spherical gold nanoparticles using mangifera indica leaf. Spectroc Acta Pt A-Molec Biomolec Spectr. 2010;77(4):807–810. doi:10.1016/j.saa.2010.08.008
  • Yu J, Xu D, Guan HN, Wang C, Huang LK. Facile one-step green synthesis of gold nanoparticles using citrus maxima aqueous extracts and its catalytic activity. Mater Lett. 2016;166:110–112. doi:10.1016/j.matlet.2015.12.031
  • Sujitha MV, Kannan S. Green synthesis of gold nanoparticles using Citrus Fruits (Citrus Limon, Citrus Reticulata And Citrus Sinensis) aqueous extract and its characterization. Spectroc Acta Pt A-Molec Biomolec Spectr. 2013;102:15–23. doi:10.1016/j.saa.2012.09.042
  • Ghodake G, Lee DS. Green synthesis of gold nanostructures using pear extract as effective reducing and coordinating agent. Korean J Chem Eng. 2011;28(12):2329–2335. doi:10.1007/s11814-011-0115-4
  • Lv J, Yi Y, Wu G, Liu W. Gold nanotriangles: green synthesis and PDT & PTT effect. Mater Lett. 2017;187:148–150. doi:10.1016/j.matlet.2016.10.087
  • Ganesan R, Prabu HG. Synthesis of gold nanoparticles using herbal acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab J Chem. 2015. doi:10.1016/j.arabjc.2014.12.017
  • Velmurugan P, Anbalagan K, Manosathyadevan M, et al. Green synthesis of silver and gold nanoparticles using zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng. 2014;37(10):1935–1943. doi:10.1007/s00449-014-1169-624668029
  • Leonard K, Ahmmad B, Okamura H, Kurawaki J. In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloid Surf B-Biointerfaces. 2011;82(2):391–396. doi:10.1016/j.colsurfb.2010.09.020
  • Nagajyothi P, Lee SE, An M, Lee KD. Green synthesis of silver and gold nanoparticles using lonicera japonica flower extract. Bull Korean Chem Soc. 2012;33(8):2609–2612. doi:10.5012/bkcs.2012.33.8.2609
  • Das RK, Gogoi N, Bora U. Green synthesis of gold nanoparticles using nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng. 2011;34(5):615–619. doi:10.1007/s00449-010-0510-y21229266
  • Yang N, WeiHong L, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett. 2014;134:67–70. doi:10.1016/j.matlet.2014.07.025
  • Kumar KM, Mandal BK, Kumar HAK, Maddinedi SB. Green synthesis of size controllable gold nanoparticles. Spectroc Acta Pt A-Molec Biomolec Spectr. 2013;116:539–545. doi:10.1016/j.saa.2013.07.077
  • Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl Mater Interfaces. 2014;6(11):8080–8089. doi:10.1021/am500302t24842534
  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of abelmoschus esculentus and its antifungal activity. Ind Crops Prod. 2013;45:423–429. doi:10.1016/j.indcrop.2012.12.019
  • Paul B, Bhuyan B, Purkayastha DD, Vadivel S, Dhar SS. One-pot green synthesis of gold nanoparticles and studies of their anticoagulative and photocatalytic activities. Mater Lett. 2016;185:143–147. doi:10.1016/j.matlet.2016.08.121
  • Rajan A, Vilas V, Philip D. Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J Mol Liq. 2015;212:331–339. doi:10.1016/j.molliq.2015.09.013
  • Cabrera FC, Mohan H, Dos Santos RJ, et al. Green synthesis of gold nanoparticles with self-sustained natural rubber membranes. J Nanomater. 2013;2013:110. doi:10.1155/2013/710902
  • Aromal SA, Vidhu V, Philip D. Green synthesis of well-dispersed gold nanoparticles using macrotyloma uniflorum. Spectroc Acta Pt A-Molec Biomolec Spectr. 2012;85(1):99–104. doi:10.1016/j.saa.2011.09.035
  • Zayed MF, Eisa WH. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectroc Acta Pt A-Molec Biomolec Spectr. 2014;121:238–244. doi:10.1016/j.saa.2013.10.092
  • Opris R, Tatomir C, Olteanu D, et al. The effect of sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloid Surf B-Biointerfaces. 2017;150:192–200. doi:10.1016/j.colsurfb.2016.11.033
  • Huo Y, Singh P, Kim YJ, et al. Biological synthesis of gold and silver chloride nanoparticles by glycyrrhiza uralensis and in vitro applications. Artif Cell Nanomed Biotechnol. 2017:1–13.
  • Mata R, Bhaskaran A, Sadras SR. Green-synthesized gold nanoparticles from plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology. 2016;24:78–86. doi:10.1016/j.partic.2014.12.014
  • Anand K, Gengan R, Phulukdaree A, Chuturgoon A. Agroforestry waste moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem. 2015;21:1105–1111. doi:10.1016/j.jiec.2014.05.021
  • Ghoreishi SM, Behpour M, Khayatkashani M. Green synthesis of silver and gold nanoparticles using rosa damascena and its primary application in electrochemistry. Physica E. 2011;44(1):97–104. doi:10.1016/j.physe.2011.07.008
  • Lee KX, Shameli K, Miyake M, et al. Green synthesis of gold nanoparticles using aqueous extract of garcinia mangostana fruit peels. J Nanomater. 2016;2016:1–7.
  • Rajan A, Rajan AR, Philip D. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano. 2017;2:1–8. doi:10.1016/j.onano.2016.11.002
  • Aromal SA, Philip D. Green synthesis of gold nanoparticles using trigonella foenum-graecum and its size-dependent catalytic activity. Spectroc Acta Pt A-Molec Biomolec Spectr. 2012;97:1–5. doi:10.1016/j.saa.2012.05.083
  • Alharbi NS, Bhakyaraj K, Gopinath K, et al. Gum-mediated fabrication of eco-friendly gold nanoparticles promoting cell division and pollen germination in plant cells. J Clust Sci. 2016;28(1):1–11.
  • Tetgure SR, Borse AU, Sankapal BR, Garole VJ, Garole DJ. Green biochemistry approach for synthesis of silver and gold nanoparticles using ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy. Amino Acids. 2015;47(4):757–765. doi:10.1007/s00726-014-1906-925618751
  • Manjunath HM, Joshi CG, Raju NG. Biofabrication of gold nanoparticles using marine endophytic fungus–penicillium citrinum. IET Nanobiotechnol. 2016;11(1):40–44. doi:10.1049/iet-nbt.2016.0065
  • Qu Y, Pei X, Shen W, et al. Biosynthesis of gold nanoparticles by aspergillum sp. WL-Au for degradation of aromatic pollutants. Physica E. 2017;88:133–141. doi:10.1016/j.physe.2017.01.010
  • Barabadi H, Honary S, Mohammadi MA, et al. Green chemical synthesis of gold nanoparticles by using penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of echinococcus granulosus. Environ Sci Pollut Res. 2017;24(6):1–11.
  • Vala AK. Exploration on green synthesis of gold nanoparticles by a marine‐derived fungus aspergillus sydowii. Environ Prog Sustain Energy. 2015;34(1):194–197. doi:10.1002/ep.v34.1
  • Shen W, Qu Y, Pei X, et al. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of aspergillus sp. WL-Au. J Hazard Mater. 2017;321:299–306. doi:10.1016/j.jhazmat.2016.07.05127637096
  • Vetchinkina EP, Loshchinina EA, Vodolazov IR, Kursky VF, Dykman LA, Nikitina VE. Biosynthesis of nanoparticles of metals and metalloids by basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases. Appl Microbiol Biotechnol. 2016;1–16.
  • Lee K, Nagajyothi P, Sreekanth T, Park S. Eco-friendly synthesis of gold nanoparticles (AuNPs) using inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J Ind Eng Chem. 2014;26:67–72. doi:10.1016/j.jiec.2014.11.016
  • Firdhouse MJ, Lalitha P. Flower-shaped gold nanoparticles synthesized using kedrostis foetidissima and their antiproliferative activity against bone cancer cell lines. Int J Ind Chem. 2016;7(4):347–358. doi:10.1007/s40090-016-0098-4
  • Medina Cruz D, Mi G, Webster TJ. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by staphylococcus aureus, methicillin‐resistant staphylococcus aureus (MRSA), escherichia coli, and pseudomonas aeruginosa. J Biomed Mater Res Part A. 2018;106(5):1400–1412. doi:10.1002/jbm.a.36347
  • Kumar CG, Poornachandra Y, Mamidyala SK. Green synthesis of bacterial gold nanoparticles conjugated to resveratrol as delivery vehicles. Colloid Surf B-Biointerfaces. 2014;123:311–317. doi:10.1016/j.colsurfb.2014.09.032
  • Otari SV, Kumar M, Kim I-W, Lee JH, Lee J-K. Rapid, thermostable antimicrobial peptide-mediated synthesis gold nanoparticles as highly efficient charge trapping medium for sol-gel-derived thin film. Mater Lett. 2017;188:375–378. doi:10.1016/j.matlet.2016.11.104
  • Rangnekar A, Sarma TK, Singh AK, Deka J, Ramesh A, Chattopadhyay A. Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir. 2007;23(10):5700–5706. doi:10.1021/la062749e17425338
  • Geng X, Grove TZ. Repeat protein mediated synthesis of gold nanoparticles: effect of protein shape on the morphological and optical properties. RSC Adv. 2015;5(3):2062–2069. doi:10.1039/C4RA12014K
  • Pienpinijtham P, Thammacharoen C, Ekgasit S. Green synthesis of size controllable and uniform gold nanospheres using alkaline degradation intermediates of soluble starch as reducing agent and stabilizer. Macromol Res. 2012;20(12):1281–1288. doi:10.1007/s13233-012-0162-7
  • Philip D. Honey mediated green synthesis of gold nanoparticles. Spectroc Acta Pt A-Molec Biomolec Spectr. 2009;73(4):650–653. doi:10.1016/j.saa.2009.03.007
  • Huang C, Chen S, Pan JR. Optimal condition for modification of chitosan: a biopolymer for coagulation of colloidal particles. Water Res. 2000;34(3):1057–1062. doi:10.1016/S0043-1354(99)00211-0
  • Esther J, Sridevi V. Synthesis and characterization of chitosan-stabilized gold nanoparticles through a facile and green approach. Gold Bull. 2016;1–5.
  • Saha SK, Roy P, Mondal MK, et al. Development of chitosan based gold nanomaterial as an efficient antifilarial agent: a mechanistic approach. Carbohydr Polym. 2017;157:1666–1676. doi:10.1016/j.carbpol.2016.11.04727987881
  • Chen Y, Wu X, Lv L, et al. Enhancing reducing ability of α-zein by fibrillation for synthesis of Au nanocrystals with continuous flow catalysis. J Colloid Interface Sci. 2017;491:37–43. doi:10.1016/j.jcis.2016.09.08128012290
  • Bollella P, Schulz C, Favero G, et al. Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis. 2017;29(1):77–86. doi:10.1002/elan.v29.1
  • Lee J, Kim HY, Zhou H, et al. Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem. 2011;21(35):13316–13326. doi:10.1039/c1jm11592h
  • Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater. 2017;55:13–27. doi:10.1016/j.actbio.2017.03.05528377307
  • Peng Q, Mu H. The potential of protein–nanomaterial interaction for advanced drug delivery. J Controlled Release. 2016;225:121–132. doi:10.1016/j.jconrel.2016.01.041
  • Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology. 2010;4(1):120–137. doi:10.3109/1743539090347146320795906
  • Elia P, Zach R, Hazan S, Kolusheva S, Porat ZE, Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomed. 2014;9:4007.
  • Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A, Ahmad R. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr Polym. 2014;104:29–33. doi:10.1016/j.carbpol.2014.01.00224607156
  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–1919. doi:10.1016/j.biomaterials.2007.12.03718242692
  • Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomed Nanotechnol Biol Med. 2009;5(2):162–169. doi:10.1016/j.nano.2008.11.002
  • Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–1316. doi:10.1158/1078-0432.CCR-07-144118316549
  • Tang L, Yang X, Yin Q, et al. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci USA. 2014;111(43):15344–15349. doi:10.1073/pnas.141149911125316794
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. doi:10.1021/nn900002m19206243
  • Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 2008;105(33):11613–11618. doi:10.1073/pnas.080176310518697944
  • Yew YP, Shameli K, Miyake M, et al. Green biosynthesis of superparamagnetic magnetite Fe 3 O 4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arab J Chem. 2018. doi:10.1016/j.arabjc.2018.04.013
  • Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012;3(4):457–478. doi:10.4155/tde.12.2122834077
  • Li L, Yang Q, Zhou Z, Zhong J, Huang Y. Doxorubicin-loaded, charge reversible, folatemodified HPMAcopolymer conjugates foractive cancercell targeting. Biomaterials 2014;35:5171–5187.
  • Nakkala JR, Mata R, Bhagat E, Sadras SR. Green synthesis of silver and gold nanoparticles from gymnema sylvestre leaf extract: study of antioxidant and anticancer activities. J Nanopart Res. 2015;17(3):1–15. doi:10.1007/s11051-015-2957-x
  • Mukherjee S, Ghosh S, Das DK, et al. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection—synthesis, characterization and in vitro evaluation. J Nutr Biochem. 2015;26(11):1283–1297. doi:10.1016/j.jnutbio.2015.06.00326310506
  • Mukherjee S, Dasari M, Priyamvada S, Kotcherlakota R, Bollu VS, Patra CR. A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. J Mat Chem B. 2015;3(18):3820–3830. doi:10.1039/C5TB00244C
  • Muniyappan N, Nagarajan N. Green synthesis of gold nanoparticles using curcuma pseudomontana essential oil, its biological activity and cytotoxicity against human ductal breast carcinoma cells T47D. J Environ Chem Eng. 2014;2(4):2037–2044. doi:10.1016/j.jece.2014.03.004
  • Patil MP, Ngabire D, Thi HHP, Kim M-D, Kim G-D. Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. J Clust Sci. 2016;1–14.
  • Balasubramani G, Ramkumar R, Raja RK, Aiswarya D, Rajthilak C, Perumal P. Albizia amara roxb. mediated gold nanoparticles and evaluation of their antioxidant, antibacterial and cytotoxic properties. J Clust Sci. 2017;1–17.
  • Devi PR, Kumar CS, Selvamani P, Subramanian N, Ruckmani K. Synthesis and characterization of Arabic gum capped gold nanoparticles for tumor-targeted drug delivery. Mater Lett. 2015;139:241–244. doi:10.1016/j.matlet.2014.10.010
  • Vijayashree I, Niranjana P, Prabhu G, Sureshbabu V, Manjanna J. Conjugation of Au nanoparticles with chlorambucil for improved anticancer activity. J Clust Sci. 2017;28(1):133–148. doi:10.1007/s10876-016-1053-4
  • Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh MG, Suguna L. Spontaneous ultra fast synthesis of gold nanoparticles using punica granatum for cancer targeted drug delivery. Colloid Surf B-Biointerfaces. 2013;106:208–216. doi:10.1016/j.colsurfb.2013.01.035
  • Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–556. doi:10.1016/j.talanta.2018.02.08829674080
  • Tian L, Zhao W, Li L, Tong Y, Peng G, Li Y. Multi-talented applications for cell imaging, tumor cells recognition, patterning, staining and temperature sensing by using egg white-encapsulated gold nanoclusters. Sensors Actuators B. 2017;240:114–124. doi:10.1016/j.snb.2016.08.147
  • Abhijith KS, Thakur MS. Application of green synthesis of gold nanoparticles for sensitive detection of aflatoxin B1 based on metal enhanced fluorescence. Anal Methods. 2012;4(12):4250–4256. doi:10.1039/c2ay25979f
  • Rao KJ, Paria S. Green synthesis of gold nanoparticles using aqueous aegle marmelos leaf extract and their application for thiamine detection. RSC Adv. 2014;4(54):28645–28652. doi:10.1039/c4ra03883e
  • Bahram M, Mohammadzadeh E. Green synthesis of gold nanoparticles with willow tree bark extract: a sensitive colourimetric sensor for cysteine detection. Anal Methods. 2014;6(17):6916–6924. doi:10.1039/C4AY01362J
  • Qin L, Zeng G, Lai C, et al. “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev. 2018;359:1–31. doi:10.1016/j.ccr.2018.01.006
  • Lu S, Wang S, Chen C, Sun J, Yang X. Enzyme-free aptamer/AuNPs-based fluorometric and colorimetric dual-mode detection for ATP. Sensors Actuators B. 2018;265:67–74. doi:10.1016/j.snb.2018.02.003
  • Hemalatha T, Prabu P, Gunadharini DN, Gowthaman MK. Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging. Int J Biol Macromol. 2018;112:250–257. doi:10.1016/j.ijbiomac.2018.01.15929378272
  • Kumar KM, Mandal BK, Sinha M, Krishnakumar V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectroc Acta Pt A-Molec Biomolec Spectr. 2012;86:490–494. doi:10.1016/j.saa.2011.11.001
  • Dhayalan M, Denison MIJ, Krishnan K. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using embelia ribes. Nat Prod Res. 2017;31(4):465–468. doi:10.1080/14786419.2016.116649927104858
  • Suganya KU, Govindaraju K, Kumar VG, et al. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against gram positive organisms. Mater Sci Eng C-Mater Biol Appl. 2015;47:351–356. doi:10.1016/j.msec.2014.11.04325492207
  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IB. Green biosynthesis of gold nanoparticles using galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017;10(Supplement 2):S3029–S39. doi:10.1016/j.arabjc.2013.11.044
  • Vanaraj S, Jabastin J, Sathiskumar S, Preethi K. Production and characterization of bio-AuNPs to induce synergistic effect against multidrug resistant bacterial biofilm. J Clust Sci. 2017;28(1):227–244. doi:10.1007/s10876-016-1081-0
  • MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloid Surf B-Biointerfaces. 2011;85(2):360–365. doi:10.1016/j.colsurfb.2011.03.009
  • Annamalai A, Christina V, Sudha D, Kalpana M, Lakshmi P. Green synthesis, characterization and antimicrobial activity of Au NPs using euphorbia hirta L. leaf extract. Colloid Surf B-Biointerfaces. 2013;108:60–65. doi:10.1016/j.colsurfb.2013.02.012
  • Reddy GR, Morais AB, Gandhi NN. Green synthesis, characterization and in vitro antibacterial studies of gold nanoparticles by using senna siamea plant seed aqueous extract at ambient conditions. Asian J Chem. 2013;25(15):8541–8544.
  • Kuppusamy P, Yusoff MM, Ichwan SJ, Parine NR, Maniam GP, Govindan N. Commelina nudiflora L. edible weed as a novel source for gold nanoparticles synthesis and studies on different physical–chemical and biological properties. J Ind Eng Chem. 2014;27:59–67. doi:10.1016/j.jiec.2014.11.045
  • Annavaram V, Posa VR, Vijaya Lakshmi D, Sumalatha J, Somala AR. Terminalia bellirica fruit extract mediated synthesis of gold nanoparticles (AuNPs) and studies on antimicrobial and antioxidant activity. Synth React Inorg Met-Org Nano-Metal Chem. 2016;47(5):681–687. doi:10.1080/15533174.2016.1212219
  • Karthika V, Arumugam A, Gopinath K, et al. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J Photochem Photobiol B. 2017;167:189–199. doi:10.1016/j.jphotobiol.2017.01.00828076823
  • Islam NU, Jalil K, Shahid M, Muhammad N, Rauf A. Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arab J Chem. 2015.
  • Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloid Surf B-Biointerfaces. 2010;80(1):45–50. doi:10.1016/j.colsurfb.2010.05.029
  • Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–2282.22130549
  • Kim D-Y, Kim M, Shinde S, Sung J-S, Ghodake G. Cytotoxicity and antibacterial assessment of gallic acid capped gold nanoparticles. Colloid Surf B-Biointerfaces. 2017;149:162–167. doi:10.1016/j.colsurfb.2016.10.017
  • Fratoddi I, Venditti I, Cametti C, Russo M. Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. J Mat Chem B. 2014;2(27):4204–4220. doi:10.1039/C4TB00383G
  • Li Y, Wu T-Y, Chen S-M, Ali MA, AlHemaid FM. Green synthesis and electrochemical characterizations of gold nanoparticles using leaf extract of magnolia kobus. Int J Electrochem Sci. 2012;7(12):12742–12751.
  • Wang R, Deng J, He D, et al. PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo. Nanomed Nanotechnol Biol Med. 2019;16:195–205. doi:10.1016/j.nano.2018.12.005
  • Karami P, Khoshsafar H, Johari-Ahar M, Arduini F, Afkhami A, Bagheri H. Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. Spectroc Acta Pt A-Molec Biomolec Spectr. 2019;222:117218. doi:10.1016/j.saa.2019.117218
  • Shende P, Kasture P, Gaud R. Nanoflowers: the future trend of nanotechnology for multi-applications. Artif Cell Nanomed Biotechnol. 2018;46(sup1):413–422. doi:10.1080/21691401.2018.1428812