353
Views
19
CrossRef citations to date
0
Altmetric
Original Research

Antibacterial Activity of a Novel Biocomposite Chitosan/Graphite Based on Zinc-Grafted Mesoporous Silica Nanoparticles

ORCID Icon &
Pages 871-883 | Published online: 07 Feb 2020

References

  • Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev. 2001;14:336–363. doi:10.1128/CMR.14.2.336-363.200111292642
  • Akhavan O, Azimirad R, Moshfegh AZ. Low temperature self-agglomeration of metallic Ag nanoparticles of on silica sol–gel thin films. J Phys D Appl Phys. 2008;41:195305. doi:10.1088/0022-3727/41/19/195305
  • Dorjnamjin D, Ariunaa M, Shim YK. Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci. 2008;9:807–820. doi:10.3390/ijms905080719325785
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353. doi:10.1088/0957-4484/16/10/05920818017
  • Wu F-C, Tseng R-L, Juang R-S. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manage. 2010;91:798–806. doi:10.1016/j.jenvman.2009.10.01819917518
  • Khan SB, Alamry KA, Bifari EN, et al. Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J Ind Chem. 2015;24:266–275.
  • Selvin R, Hsu HL, Arul NS, et al. Comparison of photo-catalytic efficiency of various metal oxide photo-catalysts for the degradation of methyl orange. Sci Adv Mater. 2010;2:58–63. doi:10.1166/sam.2010.1072
  • Hong RY, Li JH, Chen DLL, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 2009;189:426–432. doi:10.1016/j.powtec.2008.07.004
  • Ruparelia JP, Chatterjee AK, Duttagupta SP, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–716. doi:10.1016/j.actbio.2007.11.00618248860
  • Yadollahi M, Gholamali I, Namazi H, et al. Synthesis and characterization of antibacterial cellulose/ZnO carboxymethyl nanocomposite hydrogels. Int J Biol Macromol. 2015;74:136–141. doi:10.1016/j.ijbiomac.2014.11.03225524743
  • Lu Z, Gao J, He Q, et al. Enhanced Antibacterial and wound chitosan-Ag/ZnO healing activities of microporous composite dressing. Carbohydr Polym. 2017;156:460–469. doi:10.1016/j.carbpol.2016.09.05127842847
  • Fortuny A, Bengoa C, Font J, et al. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. J Hazard Mater. 1999;64:181. doi:10.1016/S0304-3894(98)00245-310337397
  • Cho KH, Park JE, Osaka T, et al. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 2005;51:956–960. doi:10.1016/j.electacta.2005.04.071
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83. doi:10.1016/j.biotechadv.2008.09.00218854209
  • Xu K, Wang JX, Kang XL, et al. Fabrication of antibacterial monodispersed Ag–SiO2 core–shell nanoparticles with high concentration. Mater Lett. 2009;63:31–33. doi:10.1016/j.matlet.2008.08.039
  • Kokura S, Handa O, Takagi T, et al. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed: Nanotechnol Biol Med. 2010;6:570–574. doi:10.1016/j.nano.2009.12.002
  • Jain J, Arora S, Rajwade JM, et al. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6:1388–1401. doi:10.1021/mp900056g19473014
  • Gaballah ST, El-Nazer HA, Abdel-Monem RA, El-Liethy MA, Hemdan BA, Rabie ST. Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int. J. Biol. Macromol. 2019;121:707–717. doi:10.1016/j.ijbiomac.2018.10.08530340001
  • Wu Y, Yang Y, Zhang Z, Wang Z, Zhao Y, Sun L. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles. Text Res J. 2019;89:867–880. doi:10.1177/0040517518758002
  • Phuruangrat A, Siri S, Wadbua P, Thongtem S, Thongtem T. Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers. J Phys Chem Solids. 2019;126:170–177. doi:10.1016/j.jpcs.2018.11.007
  • Roe D, Karandikar B, Bonn-Savage N, et al. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61:869–876. doi:10.1093/jac/dkn03418305203
  • Kim YH, Lee DK, Cha HG, et al. Synthesis and characterization of antibacterial Ag–SiO2 nanocomposite. J Phys Chem C. 2007;111:3629–3635. doi:10.1021/jp068302w
  • Adams AP, Santschi EM, Mellencamp MA. Antibacterial properties of a silver chloride-coated nylon wound dressing. Vet Surg. 1999;28:219–225. doi:10.1053/jvet.1999.021910424701
  • Chen G, Haase H, Mahltig B. Chitosan-modified silica sol applications for the treatment of textile fabrics: a view on hydrophilic, antistatic and antimicrobial properties. J Sol-Gel Sci Technol. 2019;91:461–470. doi:10.1007/s10971-019-05046-8
  • Zhu T, Jiang J, Zhao J, Chen S, Yan X. Regulating preparation of functional alginate-chitosan three-dimensional scaffold for skin tissue engineering. Int J Nanomedicine. 2019;14:8891–8903. doi:10.2147/IJN.S21032932009786
  • Ibrahim NA, Eid BM, Khalil HM. Cellulosic/wool pigment prints with remarkable antibacterial functionalities. Carbohydr Polym. 2015;115:559–567. doi:10.1016/j.carbpol.2014.09.01325439932
  • Jayakumar R, Nagahama H, Furuike T, et al. Synthesis of phosphorylated chitosan by novel method and its characterization. Int J Biol Macromol. 2008;42:335–339. doi:10.1016/j.ijbiomac.2007.12.01118279950
  • Zhao L, Mitomo H, Zhai M, et al. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym. 2003;53:439. doi:10.1016/S0144-8617(03)00103-6
  • Kumar M, Muzzarelli RAA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017. doi:10.1021/cr030441b15584695
  • Kim EH, Ahn Y, Lee HS. Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J Alloys Compd. 2007;434:633–639. doi:10.1016/j.jallcom.2006.08.311
  • Chen CS, Liau WY, Tsai GJ. Antibacterial effects of N-sulfonated and Nsulfobenzoyl chitosan and application to oyster preservation. J Food Prot. 1998;61:1124. doi:10.4315/0362-028X-61.9.11249766062
  • Juntarapun K, Satirapipathku C, The 4th RMUTP International Conference: Textiles & Fashion Bangkok Thailand Section II 2012: 1 10.1094/PDIS-11-11-0999-PDN
  • Jovancic D, Jocic D, Molina R, et al. Shrinkage properties of peroxide-enzyme biopolymer treated wool. Text Res J. 2001;71:948. doi:10.1177/004051750107101103
  • Vimala K, Mohan YM, Varaprasad K, et al. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. Biom J Nanobio. 2011;2:55.
  • Boddu VM, Abburi K, Talbott JL, et al. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res. 2008;42:633–642. doi:10.1016/j.watres.2007.08.01417822735
  • Liu H, Zhang L, Yan M, Yu J. Carbon nanostructures in biology and medicine. J Mater Chem B. 2017;5:6437–6450. doi:10.1039/C7TB00891K
  • Liu Q, Liu Y, Tang S, et al. Effects of morphological characteristics of graphite fillers on the thermal conductivity of the graphite/copper composites fabricated by vacuum hot pressing sintering. Vacuum. 2019;167:199–206. doi:10.1016/j.vacuum.2019.06.011
  • Bhatnagar A, Sillanpää M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater-A short review. Adv Colloid Interface Sci. 2009;152:26–38. doi:10.1016/j.cis.2009.09.00319833317
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442:282–286. doi:10.1038/nature0496916855586
  • Fan L, Luo C, Li X, et al. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater. 2012;215-216:272–279. doi:10.1016/j.jhazmat.2012.02.06822429622
  • Fan L, Luo C, Sun M, et al. Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol. 2012;114:703–706. doi:10.1016/j.biortech.2012.02.06722464421
  • Akhavan O, Abdolahad M, Abdi Y, et al. Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. JMCh. 2011;21:387–393.
  • Amiri A, Zardini HZ, Shanbedi M, et al. Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Matl. 2012;72:153–156.
  • Sazegar MR, Mahmoudian S, Mahmoudi A, et al. Catalyzed Claisen–Schmidt reaction by protonated aluminate mesoporous silica nanomaterial focused on the (E)-chalcone synthesis as a biologically active compound. RSC Adv. 2016;6:11023–11031. doi:10.1039/C5RA23435B
  • Sazegar MR, Dadvand A, Mahmoudi A. Novel protonated Fe-containing mesoporous silica nanoparticle catalyst: excellent performance cyclohexane oxidation. RSC Adv. 2017;7:27506–27514. doi:10.1039/C7RA02280H
  • Melaiye A, Sun Z, Hindi K, et al. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electro-spun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. JACS. 2005;127:2285–2291. doi:10.1021/ja040226s
  • Kang S, Mauter MS, Elimelech M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol. 2008;42:7528–7534. doi:10.1021/es801017318939597
  • Shrifian-Esfahani A, Salehi MT, Nasr-Esfahani M, et al. Silver/Polyethylene oxide nanocomposite: UV-fabrication, characterization, and antibacterial activity. Nanosci J. 2012;12:4851.
  • In EUCAST disk diffusion method for antimicrobial susceptibility testing European society of clinical microbiology and infectious diseases Reading guide Version 3; 2013 s3
  • Sazegar MR, Jalil AA, Triwahyono S, et al. Protonation of Al-grafted mesostructured silica nanoparticles (MSN): acidity and catalytic activity for cumene conversion. Chem Eng J. 2014;240:352–361. doi:10.1016/j.cej.2013.12.004
  • Fernandes DM, Silva R, Winkler Heichenletner AA. Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Mater Chem Phys. 2009;115:110–115. doi:10.1016/j.matchemphys.2008.11.038
  • Liu J, Zhang L, Yang Q, et al. Structural control of mesoporous silicas with large nanopores in a mild buffer solution. Microporous Mesoporous Mater. 2008;116:330. doi:10.1016/j.micromeso.2008.04.030
  • Natarajan P, Khan HA, Yoon S, Jung KD. One-pot synthesis of Pt–Sn bimetallic mesoporous alumina catalysts with worm-like pore structure for n-butane dehydrogenation. J Ind Eng Chem. 2018;63:380–390. doi:10.1016/j.jiec.2018.02.038
  • Tian X, Zeng Y, Xiao T, Yang C, Wang Y, Zhang S. Fabrication and stabilization of nanocrystalline ordered mesoporous MgO–ZrO2 solid solution. Microporous Mesoporous Mater. 2011;143:357–361. doi:10.1016/j.micromeso.2011.03.015
  • Trong D, Zaidi SMJ, Kaliaguine S. Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions. Microporous Mesoporous Mater. 1998;22:211–224. doi:10.1016/S1387-1811(98)00073-0
  • Mohamed NA, Fahmy MM. Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int J Mol Sci. 2012;13:11194–11209. doi:10.3390/ijms13091119423109847
  • Triwahyono S, Abdullah Z, Jalil AA. The effect of sulfate ion on the isomerization of n-butane to iso-butane. J Nat Gas Chem. 2006;15:247–252. doi:10.1016/S1003-9953(07)60001-2
  • Alipour K, Nasirpour F. Smart anti-corrosion self-healing zinc metal-based molybdate functionalized-mesoporous-silica (MCM-41) nanocomposite coatings. RSC Adv. 2017;7:51879–51887. doi:10.1039/C7RA06923E
  • Tortora G, Funke RB, Case LC. Microbiology—An Introduction. New York: Longman; 2001.
  • Fernandes JC, Tavaria FK, Soares JC, et al. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 2008;25:922. doi:10.1016/j.fm.2008.05.00318721683
  • Balicka-Ramisz A, Wojtasz-Pajak B, Pilarczyk A, et al. Proceedings of 5th international conference on chitin and chitosan; Warsaw 2005: s406
  • Zhong ZY, Xiong ZT, Sun LF, et al. Nano-sized nickel (or cobalt)/graphite of composites for hydrogen storage. J Phys Chem B. 2002;106:9507–9513. doi:10.1021/jp020151j
  • Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008;9:035004. doi:10.1088/1468-6996/9/3/03500427878001
  • Shrifian-Esfahni A, Salehi MT, Nasr-Esfahni M, et al. Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik. 2015;69(1):19–32.
  • Hu M, Li C, Li X, et al. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif Cells Nanomed Biotechnol. 2017. doi:10.1080/2169140120171366339
  • Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797. doi:10.1016/j.cell.2007.06.04917803904
  • Park HJ, Kim JK, Kim J. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027. doi:10.1016/j.watres.2008.12.00219073336
  • Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol. 1998;32:726. doi:10.1021/es970860o
  • Fang M, Chen JH, Xu XL, et al. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents. 2006;27:513. doi:10.1016/j.ijantimicag.2006.01.00816713190
  • Blake MD, Maness P, Huang Z, et al. Bactericidal activity of photocatalytic TiO2 Reaction: toward an understanding of its killing mechanism. Sep Purif Methods. 1999;28:1. doi:10.1080/03602549909351643
  • Stoimenov PK, Klinger RL, Marchin GL, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679. doi:10.1021/la0202374