212
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Macro-Microporous Surface with Sulfonic Acid Groups and Micro-Nano Structures of PEEK/Nano Magnesium Silicate Composite Exhibiting Antibacterial Activity and Inducing Cell Responses

, , , , , & show all
Pages 2403-2417 | Published online: 09 Apr 2020

References

  • Yang Y, Yang SB, Wang YG, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater. 2016;46:112–128. doi:10.1016/j.actbio.2016.09.03527686039
  • Li H, Wu CT, Chang J, Ge YS, Chen SY. Functional polyethylene terephthalate with nanometer-sized bioactive glass coatings stimulating in vitro and in vivo osseointegration for anterior cruciate ligament reconstruction. Adv Mater Interfaces. 2014;1(5). doi:10.1002/admi.201400027
  • Qiao SC, Cao HL, Zhao X, et al. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs. Int J Nanomed. 2015;10:653–664.
  • Liu XW, Chen C, Zhang HZ, et al. Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomed. 2019;14:457–468. doi:10.2147/IJN.S193569
  • Deng LJ, Deng Y, Xie KN. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloid Surface B. 2017;160:483–492. doi:10.1016/j.colsurfb.2017.09.061
  • Feng P, Peng SP, Wu P, et al. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds. Int J Nanomed. 2016;11:3487–3500. doi:10.2147/IJN.S110920
  • Zheng YY, Xiong CD, Wang ZC, Li XY, Zhang LF. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response. Appl Surf Sci. 2015;344:79–88. doi:10.1016/j.apsusc.2015.03.113
  • Zheng YY, Xiong CD, Zhang SL, Li XY, Zhang LF. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique. Mat Sci Eng C-Mater. 2015;55:512–523. doi:10.1016/j.msec.2015.05.070
  • Wu JP, Li LL, Fu C, et al. Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation. Colloid Surface B. 2018;169:233–241. doi:10.1016/j.colsurfb.2018.05.027
  • Ren YF, Sikder P, Lin BR, Bhaduri SB. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mat Sci Eng C-Mater. 2018;85:107–113. doi:10.1016/j.msec.2017.12.025
  • Mahjoubi H, Buck E, Manimunda P, et al. Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential. Acta Biomater. 2017;47:149–158. doi:10.1016/j.actbio.2016.10.00427717913
  • Shimizu T, Fujibayashi S, Yamaguchi S, et al. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: in vitro and in vivo studies. Acta Biomater. 2016;35:305–317. doi:10.1016/j.actbio.2016.02.00726861855
  • Kargozar S, Kermani F, Beidokhti SM, et al. Functionalization and surface modifications of bioactive glasses (BGs): tailoring of the biological response working on the outermost surface layer. Materials. 2019;12(22):3696. doi:10.3390/ma12223696
  • Pang HL, Tian HL, Qiu SB, Wang N, Wang YQ. Progress of titanium strut for cervical reconstruction with nano-graphene oxide loaded hydroxyapatite/polyamide composite and interbody fusion after corpectomy with anterior plate fixation. Artif Cell Nanomed B. 2019;47(1):3094–3100. doi:10.1080/21691401.2019.1637883
  • Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev. 2018;58(1):164–207. doi:10.1080/15583724.2017.1332640
  • Chan KW, Liao CZ, Wong HM, Yeung KWK, Tjong SC. Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Adv. 2016;6(23):19417–19429. doi:10.1039/C5RA22134J
  • Xu AX, Liu XC, Gao X, Deng F, Deng Y, Wei SC. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone- nanohydroxyapatite biocomposite. Mat Sci Eng C-Mater. 2015;48:592–598. doi:10.1016/j.msec.2014.12.061
  • Wu ZY, Tang TT, Guo H, et al. In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloid Surface B. 2014;120:38–46. doi:10.1016/j.colsurfb.2014.04.010
  • Cai L, Pan YK, Tang SC, et al. Macro-mesoporous composites containing PEEK and mesoporous diopside as bone implants: characterization, in vitro mineralization, cytocompatibility, and vascularization potential and osteogenesis in vivo. J Mater Chem B. 2017;5(42):8337–8352. doi:10.1039/C7TB02344H32264503
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.01716448693
  • Diez-Pascual AM, Diez-Vicente AL. Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications. ACS Appl Mater Inter. 2015;7(9):5561–5573. doi:10.1021/acsami.5b00210
  • Brew DRM, Glasser FP. Synthesis and characterisation of magnesium silicate hydrate gels. Cement Concrete Res. 2005;35(1):85–98. doi:10.1016/j.cemconres.2004.06.022
  • Montero JFD, Tajiri HA, Barra GMO, et al. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK). Mat Sci Eng C-Mater. 2017;70:456–460. doi:10.1016/j.msec.2016.09.017
  • Russo PA, Antunes MM, Neves P, et al. Solid acids with SO3H groups and tunable surface properties: versatile catalysts for biomass conversion. J Mater Chem A. 2014;2(30):11813–11824. doi:10.1039/C4TA02320J
  • Lai PL, Hong DW, Lin CTY, Chen LH, Chen WJ, Chu IM. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Compos Part B. 2012;43(8):3088–3095. doi:10.1016/j.compositesb.2012.04.057
  • Jablonski H, Wedemeyer C, Rekasi H, et al. Laser-induced nanostructures on titanium surfaces as developed in the aeronautics and space industry foster osteoblast activity and function in vitro. Adv Mater Interfaces. 2018;5(22). doi:10.1002/admi.201801125.
  • Wu CT, Zhou YH, Lin CC, Chang J, Xiao Y. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater. 2012;8(10):3805–3815. doi:10.1016/j.actbio.2012.06.02322750735
  • Chen YW, Yeh CH, Shie MY. Stimulatory effects of the fast setting and suitable degrading Ca–Si–Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells. J Mater Chem B. 2015;3(35):7099–7108. doi:10.1039/C5TB00713E32262712
  • Shen XK, Al-Baadani MA, He HL, et al. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo. Int J Nanomed. 2019;14:3043–3054. doi:10.2147/IJN.S198583
  • Escobar A, Muzzio NE, Andreozzi P, et al. Antibacterial layer-by-layer films of poly(acrylic acid)-gentamicin complexes with a combined burst and sustainable release of gentamicin. Adv Mater Interfaces. 2019;6(22):1901373. doi:10.1002/admi.201901373
  • Ouyang LP, Zhao YC, Jin GD, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials. 2016;83:115–126. doi:10.1016/j.biomaterials.2016.01.01726773668
  • Tomoglu S, Caner G, Arabaci A, Mutlu I. Production and sulfonation of bioactive polyetheretherketone foam for bone substitute applications. Int J Polym Mater. 2019;68(18):1167–1176. doi:10.1080/00914037.2018.1539985
  • Chen SC, Guo YL, Liu RH, et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloid Surface B. 2018;164:58–69. doi:10.1016/j.colsurfb.2018.01.022
  • Xiao QR, Zhang N, Wang X, et al. Oriented surface nanotopography promotes the osteogenesis of mesenchymal stem cells. Adv Mater Interfaces. 2017;4(3). doi:10.1002/admi.201600652.
  • Liang LC, Krieg P, Rupp F, et al. Osteoblast response to different UVA-activated anatase implant coatings. Adv Mater Interfaces. 2019;6(4). doi:10.1002/admi.201801720.
  • Wang L, Zhang K, Hao YQ, Liu M, Wu W. Osteoblast/bone-tissue responses to porous surface of polyetheretherketone-nanoporous lithium-doped magnesium silicate blends’ integration with polyetheretherketone. Int J Nanomed. 2019;14:4975–4989. doi:10.2147/IJN.S197179
  • Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–1169. doi:10.1002/adma.20140335425580589
  • Zhao Y, Wong HM, Lui SC, et al. Plasma surface functionalized polyetheretherketone for enhanced osseo-integration at bone-implant interface. ACS Appl Mater Inter. 2016;8(6):3901–3911. doi:10.1021/acsami.5b10881
  • Zhao SC, Zhang JH, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater. 2015;12:270–280. doi:10.1016/j.actbio.2014.10.01525449915