299
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Surfactin-Loaded ĸ-Carrageenan Oligosaccharides Entangled Cellulose Nanofibers as a Versatile Vehicle Against Periodontal Pathogens

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 4021-4047 | Published online: 09 Jun 2020

References

  • Nascimento PC, Castro MML, Magno MB, et al. Association between periodontitis and cognitive impairment in adults: a systematic review. Front Neurol. 2019;10(323):1–9. doi:10.3389/fneur.2019.0032330761061
  • Aminu N, Chan S-Y, Yam M-F, Toh S-M. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. Int J Pharm. 2019;570:118659. doi:10.1016/j.ijpharm.2019.11865931493495
  • Arigbede AO, Babatope BO, Bamidele MK. Periodontitis and systemic diseases: a literature review. J Indian Soc Periodontol. 2012;16(4):487–491. doi:10.4103/0972-124X.10687823493942
  • Hoare A, Soto C, Rojas-Celis V, Bravo D. Chronic inflammation as a link between periodontitis and carcinogenesis. Mediators Inflamm. 2019;2019:1–14. doi:10.1155/2019/1029857
  • Helal O, Göstemeyer G, Krois J, Fawzy El Sayed K, Graetz C, Schwendicke F. Predictors for tooth loss in periodontitis patients: systematic review and meta-analysis. J Clin Periodontol. 2019;46(7):699–712. doi:10.1111/jcpe.1311831025366
  • Chiranjeevi T, Prasad OH, Prasad UV, et al. Identification of microbial pathogens in periodontal disease and diabetic patients of south indian population. Bioinformation. 2014;10(4):241–245. doi:10.6026/9732063001024124966528
  • Winning L, Linden GJ. Periodontitis and systemic disease. BDJ Team. 2015;2(10):15163. doi:10.1038/bdjteam.2015.163
  • Teughels W, Dhondt R, Dekeyser C, Quirynen M. Treatment of aggressive periodontitis. Periodontol. 2014;65(1):107–133. doi:10.1111/prd.12020
  • Li S, Zhu D, Li K, Yang Y, Lei Z, Zhang Z. Soybean curd residue: composition, utilization, and related limiting factors. ISRN Ind Eng. 2013;2013:1–8. doi:10.1155/2013/423590
  • Torki A, Khalaji-Pirbalouty V, Lorigooini Z, Rafieian-Kopaei M, Sadeghimanesh A, Rabiei Z. Anchusa italica extract: phytochemical and neuroprotective evaluation on global cerebral ischemia and reperfusion. Braz J Pharm. 2018;54:1–9.
  • Ravindran L, Sreekala MS, Thomas S. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): structure-property relationships. Int J Biol Macromol. 2019;131:858–870. doi:10.1016/j.ijbiomac.2019.03.13430904530
  • O’Sullivan AC. Cellulose: the structure slowly unravels. Cellulose. 1997;4(3):173–207. doi:10.1023/A:1018431705579
  • Prakash Menon M, Selvakumar R, Suresh Kumar P, Ramakrishna S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv. 2017;7(68):42750–42773. doi:10.1039/C7RA06713E
  • Lin N, Dufresne A. Nanocellulose in biomedicine: current status and future prospect. Eur Polym J. 2014;59:302–325. doi:10.1016/j.eurpolymj.2014.07.025
  • Tan K, Heo S, Foo M, Chew IM, Yoo C. An insight into nanocellulose as soft condensed matter: challenge and future prospective toward environmental sustainability. Sci Total Environ. 2019;650:1309–1326. doi:10.1016/j.scitotenv.2018.08.40230308818
  • Giri J, Adhikari R. A brief review on extraction of nanocellulose and its application. BIBECHANA. 2012;9:81–87. doi:10.3126/bibechana.v9i0.7179
  • Chandra J, George N, Narayanankutty SK. Isolation and characterization of cellulose nanofibrils from areca nut husk fibre. Carbohydr Polym. 2016;142:158–166. doi:10.1016/j.carbpol.2016.01.01526917386
  • Hossain M, Zaman H, Rahman T. Derivation of nanocellulose from native rice husk. Chem Eng Res Bull. 2018;20:1–19. doi:10.3329/cerb.v20i1.36926
  • Morán J, Alvarez V, Cyras V, Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 2008;15:149–159. doi:10.1007/s10570-007-9145-9
  • Halib N, Perrone F, Cemazar M, et al. Potential applications of nanocellulose-containing materials in the biomedical field. Materials (Basel). 2017;10(8):1–31. doi:10.3390/ma10080977
  • Trache D. Nanocellulose as a promising sustainable material for biomedical applications. AIMS Mat Sci. 2018;5:201–205. doi:10.3934/matersci.2018.2.201
  • Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J. Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules. 2014;15(12):4551–4560. doi:10.1021/bm501345825353612
  • Missoum K, Belgacem MN, Bras J. Nanofibrillated cellulose surface modification: a review. Materials (Basel). 2013;6(5):1745–1766. doi:10.3390/ma605174528809240
  • Kalsoom Khan A, Saba AU, Nawazish S, et al. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev. 2017;2017:1–13. doi:10.1155/2017/8158315
  • Yu G, Guan H, Ioanoviciu AS, et al. Structural studies on κ-carrageenan derived oligosaccharides. Carbohydr Res. 2002;337(5):433–440. doi:10.1016/S0008-6215(02)00009-511861017
  • Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A. Hydrogel beads bio-nanocomposite based on kappa-carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol. 2017;104:423–431. doi:10.1016/j.ijbiomac.2017.06.01028591593
  • Deng Y, Huang M, Sun D, et al. Dual physically cross-linked κ-carrageenan-based double network hydrogels with superior self-healing performance for biomedical application. ACS Appl Mater Interfaces. 2018;10(43):37544–37554. doi:10.1021/acsami.8b1538530296052
  • Chen W-C, Juang R-S, Wei Y-H. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J. 2015;103:158–169. doi:10.1016/j.bej.2015.07.009
  • Isa MHM, Shannaq MAHF, Mohamed N, et al. Antibacterial activity of surfactin produced by b.Subtillis msh1. Tran Sci Technol. 2017;4:402–407.
  • Meena KR, Sharma A, Kanwar SS. Therapeutics. Antitumoral and antimicrobial activity of surfactin extracted from bacillus subtilis klp2015. Int J Pept Res Ther. 2019;1–11:423–433. Springer Netherlands.
  • Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res. 2018;8(1):58–67. doi:10.1016/j.jobcr.2017.12.00429556466
  • Horwitz W. Official Methods of Analysis of Aoac International. Gaithersburg, MD: AOAC International; 2000.
  • Maryana R, Ma’rifatun D, Wheni AI, Satriyo KW, Rizal WA. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia. 2014;47:250–254. doi:10.1016/j.egypro.2014.01.221
  • Thiripura Sundari M, Ramesh A. Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—eichhornia crassipes. Carbohydr Polym. 2012;87(2):1701–1705. doi:10.1016/j.carbpol.2011.09.076
  • Wang B, Sain M. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol. 2007;67(11–12):2521–2527. doi:10.1016/j.compscitech.006.12.015
  • Wulandari WT, Rochliadi A, Arcana IM. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf Ser Mater Sci Eng. 2016;107:1–8. doi:10.1088/1757-899X/107/1/012045
  • Zain NFM, Yusop SM, Ahmad I. Preparation and characterization of cellulose and nanocellulose from pomelo (citrus grandis) albedo. J Nutr Food Sci. 2014;5:226–233.
  • Liu Z, Huang H. Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives. Carbohydr Polym. 2016;147:226–233. doi:10.1016/j.carbpol.2016.03.10027178928
  • Ghaderi-Ghahfarokhi M, Barzegar M, Sahari MA, Azizi MHJF, Technology B. Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food Bioprocess Tech. 2016;9(7):1187–1201. doi:10.1007/s11947-016-1708-z
  • Sun L, Chen Y, Zhou Y, et al. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J Pharm Sci. 2017;12(5):418–423. doi:10.1016/j.ajps.2017.04.00232104354
  • Mubarak MQE, Hassan AR, Hamid AA, Kalil S, Isa MHM. A simple and effective isocratic HPLC method for fast identification and quantification of surfactin. Sains Malays. 2015;44:1–6. doi:10.17576/jsm-2015-4401-16
  • Alara OR, Abdurahman NH, Olalere OA. Optimization of microwave-assisted extraction of flavonoids and antioxidants from vernonia amygdalina leaf using response surface methodology. Food Bioprod Pro. 2018;107:36–48. doi:10.1016/j.fbp.2017.10.007
  • Palaksha M, Ahmed M, Das S. Antibacterial activity of garlic extract on streptomycin-resistant Staphylococcus aureus and Escherichia coli solely and in synergism with streptomycin. J Nat Sci Biol Med. 2010;1(1):12–15. doi:10.4103/0976-9668.7166622096329
  • Hwang YY, Ramalingam K, Bienek DR, Lee V, You T, Alvarez R. Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57(8):3568–3575. doi:10.1128/AAC.02109-1223669390
  • Gurunathan S, Han JW, Kwon D-N, Kim J-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria. Nanoscale Res Lett. 2014;9(1):373. doi:10.1186/1556-276X-9-37325136281
  • Kong Z-L, Johnson A, Ko F-C, He J-L, Cheng S-C. Effect of cistanche tubulosa extracts on male reproductive function in streptozotocin⁻nicotinamide-induced diabetic rats. Nutrients. 2018;10(10):1–22. doi:10.3390/nu10101562
  • Goel S, Mishra P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ros generation. Appl Microbiol Biotechnol. 2018;102(4):1955–1967. doi:10.1007/s00253-018-8736-829356869
  • Zhang L, Loh K-C, Sarvanantharajah S, Tong YW, Wang C-H, Dai Y. Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresour Technol. 2019;288:1–9. doi:10.1016/j.biortech.2018.09.080
  • Li B, Qiao M, Lu F. Composition, nutrition, and utilization of okara (soybean residue). Food Rev Int. 2012;28(3):231–252. doi:10.1080/87559129.2011.595023
  • Vong WC, Au Yang KLC, Liu S-Q. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Int J of Food Microbiol. 2016;235:1–9. doi:10.1016/j.ijfoodmicro.2016.06.03927391864
  • Ventura-Cruz S, Tecante A. Extraction and characterization of cellulose nanofibers from rose stems (rosa spp.). Carbohydr Polym. 2019;220:53–59. doi:10.1016/j.carbpol.2019.05.05331196550
  • Yano H, Omura H, Honma Y, Okumura H, Sano H, Nakatsubo FJC. Designing cellulose nanofiber surface for high density polyethylene reinforcement. Cellulose. 2018;25(6):3351–3362. doi:10.1007/s10570-018-1787-2
  • Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel beads for stability improvement using Doehlert shell design. J Pharm Sci. 2006;95(9):1994–2013. doi:10.1002/jps.2066516850431
  • Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–427. doi:10.1007/s12551-016-0218-628510011
  • Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80:781–789. doi:10.4172/pharmaceutical-sciences.1000422
  • Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–351. doi:10.1016/j.jconrel.2016.06.01727297779
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Trop J Pharm Res. 2013;12:255–264.
  • Joshi M, Bhattacharyya A. Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res. 2008;33:304–317.
  • Sharma R, Bisen DP, Shukla U, Sharma BG. X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Res Sci Technol. 2012;42:77–79.
  • Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S. Isolation and characterization of cellulose nanofibrils from helicteres isora plant. Ind Crop Prod. 2014;59:27–34. doi:10.1016/j.indcrop.2014.04.020
  • Valentim R, Andrade S, Dos Santos M, et al. Composite based on biphasic calcium phosphate (ha/β-TCP) and nanocellulose from the açaí tegument. Materials (Basel). 2018;11:1–16. doi:10.3390/ma11112213
  • Abraham E, Deepa B, Pothan LA, et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym. 2011;86(4):1468–1475. doi:10.1016/j.carbpol.2011.06.034
  • Lamaming J, Hashim R, Leh CP, Sulaiman O, Sugimoto T, Nasir M. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (elaeis guineensis). Carbohydr Polym. 2015;134:534–540. doi:10.1016/j.carbpol.2015.08.01726428155
  • Zeni M, Favero D, Pacheco K, Ana Grisa MC. Preparation of microcellulose (MCC) and nanocellulose (NCC) from eucalyptus kraft ssp pulp. Polym Sci. 2016;1:1–5. doi:10.4172/2471-9935.100007
  • Şen M, Erboz EN. Determination of critical gelation conditions of κ-carrageenan by viscosimetric and ft-ir analyses. Food Res Int. 2010;43(5):1361–1364. doi:10.1016/j.foodres.2010.03.021
  • Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS One. 2017;12(9):e0185313–e0185313. doi:10.1371/journal.pone.018531328957374
  • Iijima M, Hatakeyama T, Hatakeyama H. Gel-sol-gel transition of kappa–carrageenan and methylcellulose binary systems studied by differential scanning calorimetry. Thermochim Acta. 2014;596:63–69. doi:10.1016/j.tca.2014.09.021
  • Gan S, Zakaria S, Chia CH, Chen RS, Ellis AV, Kaco H. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS One. 2017;12(3):e0173743–e0173743. doi:10.1371/journal.pone.017374328296977
  • Bahuguna A, Khan I, Bajpai VK, Chul S. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol. 2017;12:115–118. doi:10.3329/bjp.v12i2.30892
  • Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–127. doi:10.1007/s13205-014-0214-0
  • Vogel R, Pal AK, Jambhrunkar S, et al. High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci Rep. 2017;7(1):17479. doi:10.1038/s41598-017-14981-x29234015
  • Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomed. 2017;12:4085–4109. doi:10.2147/IJN.S132780
  • Sousa M, Dantas IT, Feitosa FX, et al. Performance of a biosurfactant produced by bacillus subtilis lami005 on the formation of oil/biosurfactant/water emulsion: study of the phase behaviour of emulsified systems. Braz J Chem Eng. 2014;31:613–623. doi:10.1590/0104-6632.20140313s00002766
  • de Faria AF, Teodoro-Martinez DS, de Oliveira Barbosa GN, et al. Production and structural characterization of surfactin (c14/leu7) produced by bacillus subtilis isolate lsfm-05 grown on raw glycerol from the biodiesel industry. Process Biochem. 2011;46(10):1951–1957. doi:10.1016/j.procbio.2011.07.001
  • Hansen J, Bross P. A cellular viability assay to monitor drug toxicity. Methods Mol Biol. 2010;648:303–311.20700722
  • Gasque K, Al-Ahj LP, Oliveira RC, Magalhães AC. Cell density and solvent are critical parameters affecting formazan evaluation in mtt assay. Braz Arch Biol Technol. 2014;57:381–385. doi:10.1590/S1516-89132014005000007
  • Jo HY, Kim Y, Park HW, et al. The unreliability of mtt assay in the cytotoxic test of primary cultured glioblastoma cells. Exp Neurobiol. 2015;24(3):235–245. doi:10.5607/en.2015.24.3.23526412973
  • Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl. 2012;5:87–100. doi:10.2147/NSA.S2551524198499
  • Huang Y-W, Cambre M, Lee H-J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. 2017;18(12):2702. doi:10.3390/ijms18122702
  • Chen Z, Bertin R, Froldi G. Ec50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 2013;138(1):414–420. doi:10.1016/j.foodchem.2012.11.00123265506
  • Sun Y, Yang B, Wu Y, et al. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem. 2015;178:311–318. doi:10.1016/j.foodchem.2015.01.10525704717
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79. doi:10.1016/j.jpha.2015.11.00529403965
  • Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules. 2018;8(2):1–22. doi:10.3390/biom8020029
  • Corte L, Casagrande Pierantoni D, Tascini C, Roscini L, Cardinali G. Biofilm specific activity: a measure to quantify microbial biofilm. Microorganisms. 2019;7(3):1–14. doi:10.3390/microorganisms7030073
  • Mohamed MA, Nasr M, Elkhatib WF, Eltayeb WN. In vitro evaluation of antimicrobial activity and cytotoxicity of different nanobiotics targeting multidrug resistant and biofilm forming staphylococci. J BioMed Res Int. 2018;2018:1–7. doi:10.1155/2018/7658238
  • Ong KS, Cheow YL, Lee SM. The role of reactive oxygen species in the antimicrobial activity of pyochelin. J Adv Res. 2017;8(4):393–398. doi:10.1016/j.jare.2017.05.00728580180
  • Neeraja M, Lakshmi V, Padmasri C, Padmaja K. Utility of acridine orange staining for detection of bacteria from positive blood cultures. J Microbiol Methods. 2017;139:215–217. doi:10.1016/j.mimet.2017.06.01428625706
  • Li S, Chen G, Qiang S, et al. Intensifying soluble dietary fiber production and properties of soybean curd residue via autoclaving treatment. Bioresour Technol Rep. 2019;7:100203. doi:10.1016/j.biteb.2019.100203
  • O’Toole DK. Characteristics and use of okara, the soybean residue from soy milk production - a review. J Agric Food Chem. 1999;47(2):363–371. doi:10.1021/jf980754l10563901
  • Kasai N, Murata A, Inui H, Sakamoto T, Kahn RI. Enzymatic high digestion of soybean milk residue (okara). J Agric Food Chem. 2004;52(18):5709–5716. doi:10.1021/jf035067v15373413
  • Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G. Nanocellulose: extraction and application. Carbon Resour Convers. 2018;1(1):32–43. doi:10.1016/j.crcon.2018.05.004
  • Trifol J, Sillard C, Plackett D, Szabo P, Bras J, Daugaard AEJC. Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose. 2017;24(1):107–118. doi:10.1007/s10570-016-1097-5
  • Islam M, Mahbubul Alam M, Zoccola M. Review on modification of nanocellulose for application in composites. Int J Innov Res Sci Eng Technol. 2013;2(10):5444–5451.
  • Börjesson M, Westman G. Crystalline nanocellulose — preparation, modification, and properties. IntechOpen. 2015;159–191.
  • Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev. 2014;43(5):1519–1542. doi:10.1039/C3CS60204D24316693
  • Chen X, Zhao X, Gao Y, Yin J, Bai M, Wang F. Green synthesis of gold nanoparticles using carrageenan oligosaccharide and their in vitro antitumor activity. Mar Drugs. 2018;16(8):277. doi:10.3390/md16080277
  • Hu X, Jiang X, Aubree E, Boulenguer P, Critchley AT. Preparation and in vivo. antitumor activity of κ-carrageenan oligosaccharides. Pharm Biol. 2006;44(9):646–650. doi:10.1080/13880200601006848
  • Liu S, Huang S, Li L. Thermoreversible gelation and viscoelasticity of κ-carrageenan hydrogels. J Rheol. 2016;60(2):203–214. doi:10.1122/1.4938525
  • Rochas C, Geissler E. Measurement of dynamic light scattering intensity in gels. Macromolecules. 2014;47(22):8012–8017. doi:10.1021/ma501882d
  • Kaszuba M, McKnight D, Connah MT, McNeil-Watson FK, Nobbmann U. Measuring sub nanometre sizes using dynamic light scattering. J Nanoparticle Res. 2008;10(5):823–829. doi:10.1007/s11051-007-9317-4
  • Pradhan S, Hedberg J, Blomberg E, Wold S, Odnevall Wallinder I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanoparticle Res. 2016;18(9):285. doi:10.1007/s11051-016-3597-5
  • Agwuncha S, Anusionwu C, Owonubi S, Rotimi Sadiku E, Busuguma UA, Ibrahim I. Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites. Springer; 2019:37–64.
  • Rahimi M, Brown RJ, Tsuzuki T, Rainey T. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci-Nanosci. 2016;7:1–9.
  • Clogston J, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63–70.21116954
  • Nagarajan KJ, Balaji AN, Ramanujam NR. Isolation and characterization of cellulose nanocrystals from saharan aloe vera cactus fibers. Int J Polym Anal Ch. 2018;1–14.
  • Leite ALMP, Zanon CD, Menegalli FC. Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr Polym. 2017;157:962–970. doi:10.1016/j.carbpol.2016.10.04827988015
  • Mosgoeller W, Prassl R, Zimmer A. Chapter seventeen - nanoparticle-mediated treatment of pulmonary arterial hypertension. Methods Enzymol. 2012;508:325–354.22449934
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1–17. doi:10.3390/pharmaceutics10020057
  • Vernon-Parry KD. Scanning electron microscopy: an introduction. III-Vs Rev. 2000;13(4):40–44.
  • Gauvin R. Review of transmission electron microscopy for the characterization of materials. SPIE. 1997;10291:200–229.
  • Daniel-da-Silva AL, Pinto F, Lopes-da-Silva JA, Trindade T, Goodfellow BJ, Gil AM. Rheological behavior of thermoreversible κ-carrageenan/nanosilica gels. J Colloid Interf Sci. 2008;320(2):575–581. doi:10.1016/j.jcis.2008.01.035
  • Rani A, Monga S, Bansal M, Sharma A. Bionanocomposites reinforced with cellulose nanofibers derived from sugarcane bagasse. Polym Compos. 2018;39(S1):E55–E64. doi:10.1002/pc.24112
  • Jung Y-S, Lee B-H, Yoo S-H, Gomez-Casati DF. Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes. PLoS One. 2017;12(7):1–14. doi:10.1371/journal.pone.0181372
  • Thommes M, Baert L, van ’T Klooster G, et al. Improved bioavailability of darunavir by use of κ-carrageenan versus microcrystalline cellulose as pelletisation aid. Eur J Pharm Biopharm. 2009;72(3):614–620. doi:10.1016/j.ejpb.2009.03.00419303929
  • Petit C, Batool F, Bugueno IM, Schwint P, Benkirane-Jessel N, Huck O. Contribution of statins towards periodontal treatment: a review. Mediat Inflamm. 2019;2019:1–33. doi:10.1155/2019/6367402
  • Lasserre JF, Brecx MC, Toma S. Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials (Basel). 2018;11(10):1–17.
  • Rafiei M, Kiani F, Sayehmiri F, Sayehmiri K, Sheikhi A, Zamanian Azodi M. Study of porphyromonas gingivalis in periodontal diseases: a systematic review and meta-analysis. Med J Islam Repub Iran. 2017;31(1):62. doi:10.14196/mjiri.31.6229445691
  • How KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol. 2016;7:53. doi:10.3389/fmicb.2016.0005326903954
  • Nakayama M, Ohara N. Molecular mechanisms of porphyromonas gingivalis-host cell interaction on periodontal diseases. Jpn Dent Sci Rev. 2017;53(4):134–140. doi:10.1016/j.jdsr.2017.06.00129201258
  • Dani S, Prabhu A, Chaitra KR, Desai NC, Patil SR, Rajeev R. Assessment of streptococcus mutans in healthy versus gingivitis and chronic periodontitis: a clinico-microbiological study. Contemp Clin Dent. 2016;7(4):529–534. doi:10.4103/0976-237X.19411427994423
  • Laosuwan K, Epasinghe DJ, Wu Z, Leung WK, Green DW, Jung HS. Comparison of biofilm formation and migration of streptococcus mutans on tooth roots and titanium miniscrews. Clin Exp Dent Res. 2018;4(2):40–47. doi:10.1002/cre2.10129744214
  • Scharnow AM, Solinski AE, Wuest WM, Targeting S. mutans biofilms: a perspective on preventing dental caries. Med Chem Comm. 2019;10(7):1057–1067. doi:10.1039/C9MD00015A
  • Joe MM, Bradeeba K, Parthasarathi R, et al. Development of surfactin based nanoemulsion formulation from selected cooking oils: evaluation for antimicrobial activity against selected food associated microorganisms. J Taiwan Inst Chem. 2012;43(2):172–180. doi:10.1016/j.jtice.2011.08.008
  • Shalaby KS, Soliman ME, Casettari L, et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int J Nanomedicine. 2014;9:4953–4964. doi:10.2147/IJN.S6873725364252
  • Bo S, Min Z, Jing S, Zhibin H, Pedram F, Yonghao N. Applications of cellulose-based materials in sustained drug delivery systems. Curr Med Chem. 2019;26(14):2485–2501. doi:10.2174/092986732466617070514330828685683
  • Gupta D. Methods for determination of antioxidant capacity: a review. Int J Pharm Sci Res. 2015;6:546–566.
  • Ndlovu T, Rautenbach M, Vosloo JA, Khan S, Khan W. Characterisation and antimicrobial activity of biosurfactant extracts produced by bacillus amyloliquefaciens and pseudomonas aeruginosa isolated from a wastewater treatment plant. AMB Express. 2017;7(1):108. doi:10.1186/s13568-017-0363-828571306
  • Wilson C, Lukowicz R, Merchant S, et al. Quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol. 2017;6(4):1–42.
  • Moryl M, Spętana M, Dziubek K, et al. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by bacillus subtilis, on uropathogenic bacteria. Acta biochim Pol. 2015;62:725–732. doi:10.18388/abp.2015_112026505130
  • Memar MY, Ghotaslou R, Samiei M, Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist. 2018;11:567–576. doi:10.2147/IDR.S14239729731645