152
Views
8
CrossRef citations to date
0
Altmetric
Original Research

A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1253-1266 | Published online: 24 Feb 2020

References

  • Corot C, Robert P, Idée J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58:1471–1504. doi:10.1016/j.addr.2006.09.01317116343
  • Weinstein JS, Varallyay CG, Dosa E, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30:15–35. doi:10.1038/jcbfm.2009.19219756021
  • Iv M, Telischak N, Feng D, et al. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomed. 2015;10:993–1018. doi:10.2217/nnm.14.203
  • Toth GB, Varallyay CG, Horvath A, et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92:47–66. doi:10.1016/j.kint.2016.12.03728434822
  • Daldrup-Link HE, Golovko D, Ruffell B, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res. 2011;17:5695–5704. doi:10.1158/1078-0432.CCR-10-342021791632
  • Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13:125–138.24452356
  • Gholami YH, Josephson L, Akam EA, et al. A chelate-free nano-platform for incorporation of diagnostic and therapeutic isotopes. Intl J Nanomed. 2020;15:31–47. doi:10.2147/IJN.S227931
  • Normandin MD, Yuan H, Wilks MQ, et al. Heat-induced radiolabeling of nanoparticles for monocyte tracking by PET. Angew. Chem. Int. Ed Engl. 2015;54:13002–13006. doi:10.1002/anie.v54.4426368132
  • Yuan H, Wilks MQ, El Fakhri G, et al. Heat-induced-radiolabeling and click chemistry: a powerful combination for generating multifunctional nanomaterials. PLoS One. 2017;12:e0172722. doi:10.1371/journal.pone.017272228225818
  • Boros E, Bowen AM, Josephson L, Vasdev N, Holland JP. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci. 2015;6:225–236. doi:10.1039/C4SC02778G28553472
  • Shi S, Xu C, Yang K, et al. Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation. Angew Chem Int Ed Engl. 2017;56:2889–2892. doi:10.1002/anie.20161064928170126
  • Lamb J, Holland JP. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med off Publ Soc Nucl Med. 2018;59:382–389.
  • Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53:845–855. doi:10.2967/jnumed.111.09860822534830
  • Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med. 2013;54:815–824. doi:10.2967/jnumed.112.11277123492887
  • Balyasnikova S, Löfgren J, de Nijs R, et al. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging. 2012;2:458–474.23145362
  • Wong RM, Gilbert DA, Liu K, Louie AY. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano. 2012;6:3461–3467. doi:10.1021/nn300494k22417124
  • Pellico J, Ruiz-Cabello J, Saiz-Alía M, et al. Fast synthesis and bioconjugation of 68Ga core‐doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol Imaging. 2016;11:203–210. doi:10.1002/cmmi.v11.326748837
  • Turkbey B, Agarwal HK, Shih J, et al. A Phase I dosing study of ferumoxytol for MR lymphography at 3 T in patients with prostate cancer. Am. J. Roentgenol. 2015;205:64–69. doi:10.2214/AJR.14.1300926102381
  • Harisinghani M, Ross RW, Guimaraes AR, Weissleder R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia N Y N. 2007;9:1160–1165. doi:10.1593/neo.07940
  • Borra RJ, Cho H-S, Bowen SL, et al. Effects of ferumoxytol on quantitative PET measurements in simultaneous PET/MR whole-body imaging: a pilot study in a baboon model. EJNMMI Phys. 2015;2. doi:10.1186/s40658-015-0109-0
  • Rossin R, Pan D, Qi K, et al. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med. 2005;46:1210–1218.16000291
  • Li G, Wang X, Zong S, et al. MicroPET imaging of CD13 expression using a (64)Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm. 2014;11:3938–3946. doi:10.1021/mp500354x25054774
  • Jalilian AR, Hosseini-Salekdeh SL, Mahmoudi M, et al. Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats. J Radioanal Nucl Chem. 2011;287:119–127. doi:10.1007/s10967-010-0661-y
  • Thorek DLJ, Ulmert D, Diop N-FM, et al. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun. 2014;5:3097. doi:10.1038/ncomms409724445347
  • Bushberg JT, Boone JM. The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins; 2011.
  • Mills AF, Sakai O, Anderson SW, Jara H. Principles of quantitative MR imaging with illustrated review of applicable modular pulse diagrams. Radiogr Rev Publ Radiol Soc N Am Inc. 2017;37:2083–2105.
  • Yuan H, Wilks MQ, Normandin MD, et al. Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry. Nat Protoc. 2018;13:392–412. doi:10.1038/nprot.2017.13329370158
  • McCullough BJ, Kolokythas O, Maki JH, Green DE. Ferumoxytol in clinical practice: implications for MRI. J Magn Reson Imaging. 2013;37:1476–1479. doi:10.1002/jmri.2387923097302
  • Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev. 1999;37:121–137. doi:10.1016/S0169-409X(98)00103-310837731
  • Zhou Z, Bai R, Munasinghe J, et al. T1-T2 dual-modal magnetic resonance imaging: from molecular basis to contrast agents. ACS Nano. 2017;11:5227–5232. doi:10.1021/acsnano.7b0307528613821
  • Szpak A, Fiejdasz S, Prendota W, et al. T1-T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanoparticle Res Interdiscip Forum Nanoscale Sci Technol. 2014;16:2678.
  • Sharma VK, Alipour A, Soran-Erdem Z, Aykut ZG, Demir HV. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1–T2 MRI contrast agents. Nanoscale. 2015;7:10519–10526. doi:10.1039/C5NR00752F26010145
  • Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci. 2013;14:10591–10607. doi:10.3390/ijms14051059123698781
  • Bao Y, Sherwood JA, Sun Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J Mater Chem C. 2018;6:1280–1290. doi:10.1039/C7TC05854C
  • Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H. A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009;9:4434–4440. doi:10.1021/nl902715v19799448
  • Hannecart A, Stanicki D, Vander Elst L, et al. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale. 2015;7:3754–3767. doi:10.1039/C4NR07064J25644780
  • Zeng J, Jing L, Hou Y, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater. 2014;26:2694–2698. doi:10.1002/adma.20130474424615901
  • Smolensky ED, Park H-YE, Berquó TS, Pierre VC. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications - effect of anchoring group and ligand exchange protocol. Contrast Media Mol Imaging. 2011;6:189–199. doi:10.1002/cmmi.41721861279
  • Fernández-Barahona I, Muñoz-Hernando M, Pellico J, Ruiz-Cabello J, Herranz F. Molecular imaging with 68Ga radio-nanomaterials: shedding light on nanoparticles. Appl Sci. 2018;8:1098. doi:10.3390/app8071098
  • Knobloch G, Colgan T, Wiens CN, et al. Relaxivity of ferumoxytol at 1.5T and 3.0T. Invest Radiol. 2018;53:257–263. doi:10.1097/RLI.000000000000043429215401
  • Yoo D, Lee J-H, Shin T-H, Cheon J. Theranostic magnetic nanoparticles. Acc Chem Res. 2011;44:863–874.21823593
  • Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85:315–319. doi:10.1002/ajh.2165620201089
  • Singh A, Patel T, Hertel J, et al. Safety of ferumoxytol in patients with anemia and CKD. Am J Kidney Dis. 2008;52:907–915. doi:10.1053/j.ajkd.2008.08.00118824288
  • Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol. 1989;152:167–173. doi:10.2214/ajr.152.1.1672783272
  • Byrne SL, Krishnamurthy D, Wessling-Resnick M. Pharmacology of iron transport. Annu Rev Pharmacol Toxicol. 2013;53. doi:10.1146/annurev-pharmtox-010611-134648
  • Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110:3019–3042. doi:10.1021/cr100025t20415475
  • Hasebroock KM, Serkova NJ. Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol. 2009;5:403–416. doi:10.1517/1742525090287379619368492
  • McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–782. doi:10.1148/radiol.1515002525742194
  • Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015;275:630–634. doi:10.1148/radiol.201515080525942418
  • Van Wagoner M, Worah D. Gadodiamide injection. First human experience with the nonionic magnetic resonance imaging enhancement agent. Invest Radiol. 1993;28(Suppl 1):S44–S48. doi:10.1097/00004424-199303001-00005
  • Wehrli FW. Magnetic resonance of calcified tissues. J Magn Reson San Diego Calif 1997. 2013;229:35–48.
  • Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14. doi:10.1016/j.nucmedbio.2012.08.00422998840
  • Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS, et al. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol. 2016;7:131. doi:10.3389/fphar.2016.0013127252651
  • Börjesson PKE, Jauw YW, Boellaard R, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12:2133–2140. doi:10.1158/1078-0432.CCR-05-213716609026
  • Makris NE, Boellaard R, Visser EP, et al. Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med. 2014;55:264–267. doi:10.2967/jnumed.113.13011224357686