282
Views
33
CrossRef citations to date
0
Altmetric
Original Research

Combined Delivery of Temozolomide and siPLK1 Using Targeted Nanoparticles to Enhance Temozolomide Sensitivity in Glioma

, , , , , , , ORCID Icon, ORCID Icon & show all
Pages 3347-3362 | Published online: 12 May 2020

References

  • Hart MG, Garside R, Rogers G, Stein K, Grant R. Temozolomide for high grade glioma. Cochrane Database Syst Rev. 2013;4:CD007415. doi:10.1002/14651858.CD007415.pub223633341
  • Lam FC, Morton SW, Wyckoff J, et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun. 2018;9. doi:10.1038/s41467-018-04315-4
  • Fang C, Wang K, Stephen ZR, et al. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl Mater Inter. 2015;7:6674–6682. doi:10.1021/am5092165
  • Bertucci A, Prasetyanto EA, Septiadi D, et al. Combined delivery of temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small. 2015;11:5687–5695. doi:10.1002/smll.20150054026395266
  • Salazar N, Carlson JC, Huang K, et al. A chimeric antibody against ACKR3/CXCR7 in combination with TMZ activates immune responses and extends survival in mouse GBM models. Mol Ther. 2018;26:1354–1365. doi:10.1016/j.ymthe.2018.02.03029606504
  • Qian L, Zheng J, Wang K, et al. Cationic core-shell nanoparticles with carmustine contained within O6-benzylguanine shell for glioma therapy. Biomaterials. 2013;34:8968–8978. doi:10.1016/j.biomaterials.2013.07.09723953782
  • Liang P, Shi H, Zhu W, et al. Silver nanoparticles enhance the sensitivity of temozolomide on human glioma cells. Oncotarget. 2017;8:7533.27893419
  • Wu M, Fan Y, Lv S, Xiao B, Ye M, Zhu X. Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv. 2016;23(8):2720–2725. doi:10.3109/10717544.2015.105843426203691
  • Messaoudi K, Saulnier P, Boesen K, Benoit JP, Lagarce F. Anti-epidermal growth factor receptor siRNA carried by chitosan-transacylated lipid nanocapsules increases sensitivity of glioblastoma cells to temozolomide. Int J Nanomedicine. 2014;9:1479–1490. doi:10.2147/IJN.S5913424711698
  • Xu X, Wang Z, Liu N, et al. Association between SOX9 and CA9 in glioma, and its effects on chemosensitivity to TMZ. Int J Oncol. 2018;53:189–202. doi:10.3892/ijo.2018.438229749469
  • Cheng D, Cao N, Chen J, Yu X, Shuai X. Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat. Biomaterials. 2012;33:1170–1179. doi:10.1016/j.biomaterials.2011.10.05722061491
  • Clemente N, Ferrara B, Gigliotti C, et al. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies. Int J Mol Sci. 2018;19:255. doi:10.3390/ijms19020255
  • Kim SS, Harford JB, Moghe M, Rait A, Pirollo KF, Chang EH. Targeted nanocomplex carrying siRNA against MALAT1 sensitizes glioblastoma to temozolomide. Nucleic Acids Res. 2018;46:1424–1440. doi:10.1093/nar/gkx122129202181
  • Pan H, Wang H, Jia Y, et al. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells. Mol Med Rep. 2017;16:908–914. doi:10.3892/mmr.2017.662128560379
  • Stupp R, Gander M, Leyvraz S, Newlands E. Current and future developments in the use of temozolomide for the treatment of brain tumours. Lancet Oncol. 2001;2:552–560. doi:10.1016/S1470-2045(01)00489-211905710
  • Li K, Liang N, Yang H, Liu H, Li S. Temozolomide encapsulated and folic acid decorated chitosan nanoparticles for lung tumor targeting: improving therapeutic efficacy both in vitro and in vivo. Oncotarget. 2017;8. doi:10.18632/oncotarget.22791
  • Yoo B, Ifediba MA, Ghosh S, Medarova Z, Moore A. Combination treatment with theranostic nanoparticles for glioblastoma sensitization to TMZ. Mol Imaging Biol. 2014;16:680–689. doi:10.1007/s11307-014-0734-324696184
  • Gutteridge REA, Ndiaye MA, Liu X, Ahmad N. Plk1 inhibitors in cancer therapy: from laboratory to clinics. Mol Cancer Ther. 2016;15:1427–1435. doi:10.1158/1535-7163.MCT-15-089727330107
  • Strebhardt K, Ullrich A. Targeting Polo-like kinase 1 for cancer therapy. Nat Rev Cancer. 2006;6:321–330. doi:10.1038/nrc184116557283
  • Jiang R, Lu X, Yang M, Deng W, Fan Q, Huang W. Monodispersed brush-like conjugated polyelectrolyte nanoparticles with efficient and visualized siRNA delivery for gene silencing. Biomacromolecules. 2013;14:3643–3652. doi:10.1021/bm401000x24040909
  • Jeong SB, Im JH, Yoon J, et al. Essential role of Polo-like kinase 1 (Plk1) oncogene in tumor growth and metastasis of tamoxifen-resistant breast cancer. Mol Cancer Ther. 2018;17:825–837. doi:10.1158/1535-7163.MCT-17-054529437878
  • Czaplinski S, Hugle M, Stiehl V, Fulda S. Polo-like kinase 1 inhibition sensitizes neuroblastoma cells for vinca alkaloid-induced apoptosis. Oncotarget. 2016;7:8700. doi:10.18632/oncotarget.390126046302
  • Pezuk JA, Brassesco MS, Morales AG, et al. Inhibition of Polo-like kinase 1 induces cell cycle arrest and sensitizes glioblastoma cells to ionizing radiation. Cancer Biother Radio. 2013;28:516–522.
  • Sakurai Y, Hatakeyama H, Akita H, Harashima H. Improvement of doxorubicin efficacy using liposomal anti-Polo-like kinase 1 siRNA in human renal cell carcinomas. Mol Pharmaceut. 2014;11:2713–2719. doi:10.1021/mp500245z
  • Gleixner KV, Ferenc V, Peter B, et al. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res. 2010;70:1513–1523. doi:10.1158/0008-5472.CAN-09-218120145140
  • Benoit DSW, Henry SM, Shubin AD, Hoffman AS, Stayton PS. pH-Responsive polymeric siRNA carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of Polo-like kinase 1. Mol Pharmaceut. 2010;7:442–455. doi:10.1021/mp9002255
  • Koncar RF, Chu Z, Romick-Rosendale LE, et al. PLK1 inhibition enhances temozolomide efficacy in IDH1 mutant gliomas. Oncotarget. 2017;8:15827–15837. doi:10.18632/oncotarget.1501528178660
  • Liu NJ, Hu GZ, Wang H, Li ZH, Guo ZG. PLK1 inhibitor facilitates the suppressing effect of temozolomide on human brain glioma stem cells. J Cell Mol Med. 2018;22:5300–5310. doi:10.1111/jcmm.1379330133120
  • Wang Y, Singh R, Wang L, et al. Polo-like kinase 1 inhibition diminishes acquired resistance to epidermal growth factor receptor inhibition in non-small cell lung cancer with T790M mutations. Oncotarget. 2016;7:47998–48010. doi:10.18632/oncotarget.1033227384992
  • Liao G, Wang R, Rezey AC, Gerlach BD, Tang DD. MicroRNA miR-509 regulates ERK1/2, the vimentin network, and focal adhesions by targeting Plk1. Sci Rep. 2018;8:12635. doi:10.1038/s41598-018-30895-830135525
  • Lerner RG, Grossauer S, Kadkhodaei B, et al. Targeting a Plk1-controlled polarity checkpoint in therapy-resistant glioblastoma-propagating cells. Cancer Res. 2015;75:5355–5366. doi:10.1158/0008-5472.CAN-14-368926573800
  • Liu DZ, Cheng Y, Cai RQ, et al. The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomedicine-Uk. 2018;14:991–1003. doi:10.1016/j.nano.2018.01.004
  • Jiang Y, Tang R, Duncan B, et al. Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. Angew Chem Int Ed Engl. 2015;54:506–510. doi:10.1002/anie.20140916125393227
  • Li Y, Liu R, Yang J, Ma G, Zhang Z, Zhang X. Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials. 2014;35:9731–9745. doi:10.1016/j.biomaterials.2014.08.02225189519
  • Garber K. Alnylam launches era of RNAi drugs. Nat Biotechnol. 2018;36:777–778. doi:10.1038/nbt0918-77730188543
  • Liu HM, Zhang YF, Xie YD, et al. Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy. Int J Nanomedicine. 2017;12:1065–1083. doi:10.2147/IJN.S12528628223799
  • Chen YC, Chinang CF, Chen LF, Liang PC, Hsieh WY, Lin WL. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials. 2014;35:4066–4081. doi:10.1016/j.biomaterials.2014.01.04224513319
  • Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B, Sabri S. Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget. 2016;7:60245–60269. doi:10.18632/oncotarget.1119727533246
  • Peng Y, Huang J, Xiao H, Wu T, Shuai X. Codelivery of temozolomide and siRNA with polymeric nanocarrier for effective glioma treatment. <![CDATA[International Journal of Nanomedicine]]>. 2018;13:3467–3480. doi:10.2147/IJN.S16461129942129
  • Liu H, Li Y, Mozhi A, et al. SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment. Biomaterials. 2014;35:6519–6533. doi:10.1016/j.biomaterials.2014.04.03324797882
  • Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol. 2018;9:170. doi:10.3389/fphys.2018.0017029615917
  • Roger M, Clavreul A, Venier-Julienne M, Passirani C, Montero-Menei C, Menei P. The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy. Biomaterials. 2011;32:2106–2116. doi:10.1016/j.biomaterials.2010.11.05621183214
  • Petovari G, Hujber Z, Krencz I, et al. Targeting cellular metabolism using rapamycin and/or doxycycline enhances anti-tumour effects in human glioma cells. Cancer Cell Int. 2018;18:211. doi:10.1186/s12935-018-0710-030574020
  • Creixell M, Peppas NA. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today. 2012;7:367–379. doi:10.1016/j.nantod.2012.06.01326257819
  • Fan Y, Xue W, Schachner M, Zhao W.,Honokiol eliminates glioma/glioblastoma stem cell-like cells via JAK-STAT3 signaling and inhibits tumor progression by targeting epidermal growth factor receptor. Cancers (Basel). 2018;11. doi:10.3390/cancers11010022
  • Parajuli P, Mittal S. Picture of glioma stem cells has become a Notch brighter. Stem Cell Investig. 2018;5:42. doi:10.21037/sci.2018.11.02
  • Zhi T, Jiang K, Xu X, et al. ECT2/PSMD14/PTTG1 axis promotes the proliferation of glioma through stabilizing E2F1. Neuro Oncol. 2019;21:462–473. doi:10.1093/neuonc/noy207
  • Zhang C, Yang X, Fu C, Liu X. Combination with TMZ and miR-505 inhibits the development of glioblastoma by regulating the WNT7B/Wnt/beta-catenin signaling pathway. Gene. 2018;672:172–179. doi:10.1016/j.gene.2018.06.03029906532
  • Wu Q, Cao Z, Xiao W, et al. Study on therapeutic action and mechanism of TMZ combined with RITA against glioblastoma. Cell Physiol Biochem. 2018;51:2536–2546. doi:10.1159/00049592330562758
  • Wang Y, Wu L, Yao Y, Lu G, Xu L, Zhou J. Polo-like kinase 1 inhibitor BI 6727 induces DNA damage and exerts strong antitumor activity in small cell lung cancer. Cancer Lett. 2018;436:1–9. doi:10.1016/j.canlet.2018.08.00730118839
  • Yang B, Ma YB, Chu SH. Silencing SATB1 overcomes temozolomide resistance by downregulating MGMT expression and upregulating SLC22A18 expression in human glioblastoma cells. Cancer Gene Ther. 2018;25:309–316. doi:10.1038/s41417-018-0040-330140041