584
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Comparative Study of Antibacterial Effects of Titanium Dioxide Nanoparticles Alone and in Combination with Antibiotics on MDR Pseudomonas aeruginosa Strains

, , &
Pages 3393-3404 | Published online: 14 May 2020

References

  • Jain SN, Vishwanatha T, Reena V, et al. Antibiotic synergy test: checkerboard method on multidrug resistant Pseudomonas aeruginosa. Int Res J Pharm. 2011;2(12):196–198.
  • Arora B, Murar M, Dhumale V. Antimicrobial potential of TiO2 nanoparticles against MDR Pseudomonas aeruginosa. J Exp Nanosci. 2015;10(11):819–827. doi:10.1080/17458080.2014.902544
  • Vincent MG, John NP, Narayanan PM, Vani C, Murugan S. In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J Appl Pharm Sci. 2014;4(7):41–46. doi:10.7324/JAPS.2014.40707
  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–192. doi:10.1016/j.biotechadv.2018.11.01330500353
  • Yang YX, Xu ZH, Zhang YQ, Tian J, Weng LX, Wang LH. A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J Microbiol. 2012;50(6):987–993. doi:10.1007/s12275-012-2149-723274985
  • Hajipour MJ, Fromm KM, Akbar Ashkarran A, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511. doi:10.1016/j.tibtech.2012.06.004.,22884769
  • Roy AS, Parveen A, Koppalkar AR, Prasad MVNA. Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant staphylococcus aureus. J Biomater Nanobiotechnol. 2010;01(01):37–41. doi:10.4236/jbnb.2010.11005
  • Abdulrahman NBA, Nssaif ZM. Antimicrobial activity of zinc oxide, titanium dioxide and silver nanoparticles against mithicillin-resistant Staphylococcus aureus Isolates. Tikrit J of Pure Sci. 2016;21(3):49–53.
  • Kareem PA, Alsammak EG. The effect of silver and titanium dioxide nanoparticles on Klebsiella pneumoniae isolates multi resistant to antibiotics and observed by scanning electron microscopy. Cihan Univ Sci J. 2017;2017(Special–2):284–297. doi:10.24086/cuesj.si.2017.n2a26
  • Lusvardi G, Barani C, Giubertoni F, Paganelli G. Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials. 2017;10(10):1–11. doi:10.3390/ma10101208
  • Collee JG, Fraser AG, Marmion BP, Fraser AG, Simmons A. Mackie & McCartney Practical Medical Microbiology. 14th ed. New York: Churchill Livingstone; 1996.
  • Wayne P Clinical and Laboratory Standards Institute: performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20. 2010.
  • Gad GF, El-Domany RA, Zaki S, Ashour HM. Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. J Antimicrob Chemother. 2007;60(5):1010–1017. doi:10.1093/jac/dkm34817906321
  • Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52(1):1. doi:10.1093/jac/dkg30112805255
  • Ravishankar RV, Jamuna BA. Nanoparticles and their potential application as antimicrobials. Formatex. 2011;197–209.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1–17. doi:10.3390/pharmaceutics10020057
  • Halimi SU, Abu Bakar NF, Ismail SN, Hashib SA, Naim MN. Electrospray deposition of titanium dioxide (TiO2) nanoparticles. AIP Conf Proc. 2014;1586(February 2015):57–62. doi:10.1063/1.4866730
  • Catauro M, Tranquillo E, Poggetto GD, Pasquali M, Era AD, Ciprioti SV. Influence of the heat treatment on the particles size and on the crystalline phase of TiO 2 synthesized by the Sol-Gel method. Materials. 2018;11(2364):1–11. doi:10.3390/ma11122364
  • Anaya-esparza LM, Montalvo-gonz E. Synthesis and characterization of TiO 2-ZnO-MgO mixed oxide and their antibacterial activity. Materials. 2019;12(698):1–12. doi:10.3390/ma12050698
  • Baszczuk A, Jasiorski M, Winnicki M. Low-temperature transformation of amorphous Sol–Gel TiO2 powder to anatase during cold spray deposition. J Therm Spray Technol. 2018;27(8):1551–1562. doi:10.1007/s11666-018-0769-0
  • Padhi B, Chougule M, Misra A. Aerosol performance of large respirable particles of amikacin sulfate produced by spray and freeze drying techniques. Curr Drug Deliv. 2009;6(1):8–16. doi:10.2174/15672010978704826719418951
  • Prabhu NB, Marathe AS, Jain S, et al. Comparison of dissolution profiles for sustained release resinates of BCS class i drugs using USP apparatus 2 and 4: a technical note. AAPS PharmSciTech. 2008;9(3):769–773. doi:10.1208/s12249-008-9110-418563575
  • Pushpamalar J, Zakiah H, Thenapakiam S, Saravanan M. Radiation cross-linked carboxymethyl sago pulp discs for sustained drug delivery: ciprofloxacin uptake and physicochemical characterization. J Appl Pharm Sci. 2018;8(1):017–020. doi:10.7324/JAPS.2018.8103
  • Widyastuti I, Ainurofiq A, Soewandhi SN. Effects of thermal energy, mechanical energy, and solvent on ciprofloxacin hydrochloride monohydrate physicochemical properties. Rasayan J Chem. 2019;12(4):1973–1984. doi:10.31788/RJC.2019.1245426
  • Maghrabia AE, Boughdady MF, Meshali MM. New perspective enteric-coated tablet dosage form for oral administration of ceftriaxone: in vitro and in vivo assessments. AAPS PharmSciTech. 2019;20(306):1–12. doi:10.1208/s12249-019-1512-y
  • Ferdous S, Sultan MZ, Bashar T, Rahman A, Islam MS. In vitro and in vivo studies of drug-drug interaction between metformin and cefepime. Pharm Anal Acta. 2015;06:3. doi:10.4172/2153-2435.1000348
  • Shahab MU, Tabish TA, Zaman B, Tariq Z, Kamran M. Characterization and synthesis of nanosized TiO2 particles. Int Eng. 2005;3:(December):313–316.
  • Chatterjee A, Nishanthini D, Sandhiya N, Abraham J. Biosynthesis of titanium dioxide nanoparticles using Vigna radiata. Asian J Pharm Clin Res. 2016;9(4):85–88.
  • Sharma UK, Verma A, Prajapati SK, Pandey H, Pandey AC. In vitro, in vivo and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery. Appl Nanosci. 2015;5(2):143–155. doi:10.1007/s13204-014-0300-y
  • Tan Z, Tan F, Zhao L, Li J. The synthesis, characterization and application of ciprofloxacin complexes and its coordination with copper, manganese and zirconium ions. J Cryst Process Technol. 2012;2(2):55–63. doi:10.4236/jcpt.2012.22008
  • Hezam M, Qaid SMH, Bedja IM, Alharbi F, Nazeeruddin MK, Aldwayyan A. Synthesis of pure brookite nanorods in a nonaqueous growth environment. Crystals. 2019;9(11):1–8. doi:10.3390/cryst9110562
  • Al-Azzawi SNA, Abdullah RM. Study of the resistance of P. aeruginosa isolated from wounds and burns for some disinfects and antiseptic from some baghdad hospitals. J Pharm Sci Res. 2018;10(6):1481–1484.
  • Olayinka AT, Onile BA, Olayinka BO. Prevalence of Multi-Drug Resistant (MDR) Pseudomonas aeruginosa isolates in surgical units of Ahmadu Bello University Teaching Hospital, Zaria, Nigeria: an indication for effective control measures. Ann Afr Med. 2004;3(1):13–16.
  • Kamaria PA, Aring BJ, Sinha M. Incidence of multidrug resistant Pseudomonas aeruginosa isolated from burn patients Tertiary Care Hospital, Jamnagar, Gujarat, India. IOSR J Dent Med Sci. 2016;15(07):31–34. doi:10.9790/0853-150773134
  • Appiah-Korang L, Asare-Gyasi S, Yawson AE, Searyoh K. Aetiological agents of ear discharge: a two year review in a teaching hospital in Ghana. Ghana Med J. 2014;48(2):91–95. doi:10.4314/gmj.v48i2.625667556
  • Mahmoud A, Zahran W, Hindawi G, Labib A, Galal R. Prevalence of multidrug-resistant Pseudomonas aeruginosa in patients with nosocomial infections at a University Hospital in Egypt, with special reference to typing methods. J Virol Microbiol. 2013;2013:1–13. doi:10.5171/2013.290047
  • Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, Ashour MSED. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. Biomed Res Int. 2014;2014:1–8. doi:10.1155/2014/101635
  • Hassuna NA, Mohamed AHI, Abo-Eleuoon SM, RiZk HAWA. High prevalence of multi-drug resistant Pseudomonas aeruginosa recovered from infected burn wounds in children. Arch Clin Microbiol. 2015;16(4):1–7.
  • Abbas HA, El-Ganiny AM, Kamel HA. Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr Health Sci. 2018;18(1):11–21. doi:10.4314/ahs.v18i1.329977252
  • Al-Agamy MH, Shibl AM, Yaki SA, Tawfik AF. Antimicrobial resistance pattern and prevalence of metallo-β-lactamases in Pseudomonas aeruginosa from Saudi Arabia. African J Microbiol Res. 2011;5(30). doi:10.5897/ajmr11.1024
  • Yayan J, Ghebremedhin B, Rasche K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. PLoS One. 2015;10(10):1–20. doi:10.1371/journal.pone.0139836
  • Diab M, Fam N, El-said M, El-dabaa E, El Defrawy I, Saber M. Occurrence of VIM-2 metallo-β-lactamases in imipenem resistant and susceptible Pseudomonas aeruginosa clinical isolates from Egypt. African J Microbiol Res. 2013;7(35):4465–4472. doi:10.5897/AJMR2013.6181
  • Ansari A, Salman SM, Yaqoob S. Original research article antibiotic resistance pattern in Pseudomonas aeruginosa strains isolated at Era s Lucknow Medical College and Hospital, Lucknow, India. Int.J.Curr.Microbiol.App.Sci. 2015;1(1):48–58.
  • Castro-Alarcón N, Herrera-Arizmendi JL, Marroquín-Carteño LA, Guzmán-Guzmán IP, Pérez-Centeno A, Santana-Aranda MA. Antibacterial activity of nanoparticles of titanium dioxide, intrinsic and doped with indium and iron. Microbiol Res Int. 2016;4(4):55–62.
  • Duymaz B, Yigit ZV, Şeker MG, Dündar F. Antibacterial properties of sol-gel derived TiO2 nanoparticles. Acta Phys Pol A. 2016;129(4):872–874. doi:10.12693/APhysPolA.129.872
  • Alhadrami HA, Al-Hazmi F. Antibacterial activities of titanium oxide nanoparticles. J Bioelectron Nanotechnol. 2017;2(1):1–5. doi:10.13188/2475-224x.1000007
  • Thomas RA. Analysis of antimicrobial activity of titaniumdioxide nanoparticles on aerobic and anaerobic dental isolates. Int J Sci Res Sci Eng Technol. 2016;2(4):2394–4099.
  • Chen Y, Yan L, Yuan T, Zhang Q, Fan H. Asymmetric polyurethane membrane with in situ generated Nano-TiO2 as wound dressing. J Appl Polym Sci. 2011;119:1532–1541. doi:10.1002/app.32813
  • Ismail NA, Amin KAM, Abdul Majid FA, Razali MH. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mate Sci Eng C. 2019;103:109770. doi:10.1016/j.msec.2019.109770
  • Nikpasand A, Parvizi MR; Study. Evaluation of the effect of titatnium dioxide nanoparticles/gelatin composite on infected skin wound healing; an animal model. Bull Emerg Trauma. 2019;7(4):366–372.31857999
  • Amer AM, Abd El Maksoud AI, Abdeen MA, et al. Potency of titanium dioxide nanoparticles on skin wound healing in rats. Res J Pharmaceutical Biol Chem Sci. 2018;9(6):909–923.
  • Javanmardi S, Ghojoghi A, Divband B, Ashrafi J. Titanium dioxide nanoparticle/gelatin: a potential burn wound healing biomaterial. Wounds. 2018;30(12):372–379.30507548
  • Kotlhao K, Madiseng MDT, Mtunzi FM, et al. The synthesis of silver, zinc oxide and titanium dioxide nanoparticles and their antimicrobial activity. Adv Mater Proc. 2017;2(8):479–484. doi:10.5185/amp.2017/803
  • Masoumi S, Shakibaie MR, Gholamrezazadeh M, Monirzadeh F. Evaluation synergistic effect of TiO2, ZnO nanoparticles and amphiphilic peptides (Mastoparan-B, indolicidin) against drug-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and acinetobacter baumannii. Arch Pediatr Infect Dis. 2018;6(3):0–7. doi:10.5812/pedinfect.57920
  • Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther. 2011;9(11):1035–1052. doi:10.1586/eri.11.12122029522