240
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer

ORCID Icon, , , , , , & show all
Pages 4151-4169 | Published online: 12 Jun 2020

References

  • Ter Haar G, Coussios C. High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia. 2007;23:89–104. doi:10.1080/0265673060118613817578335
  • Wang Z. The theoretical basis of minimally-invasive and non-invasive medicine: treatments-minimize harm to patients. Ultrason Sonochem. 2015;27:649–653. doi:10.1016/j.ultsonch.2015.05.02326074209
  • Bull JMC. A review of immune therapy in cancer and a question: can thermal therapy increase tumor response? Int J Hyperthermia. 2018;34:840–852. doi:10.1080/02656736.2017.138793828974121
  • van den Bijgaart RJ, Eikelenboom DC, Hoogenboom M. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol Immunother. 2017;66:247–258. doi:10.1007/s00262-016-1891-927585790
  • Feng W. High intensity focused ultrasound ablation and antitumor immune response. J Acoust Soc Am. 2013;134:1695–1701. doi:10.1121/1.481289323927210
  • Qian X, Han X, Chen Y. Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials. 2017;142:13–30. doi:10.1016/j.biomaterials.2017.07.01628719818
  • Yizhen L, Hao L, Liu F. Cell penetrating peptide-modified nanoparticles for tumor targeted imaging and synergistic effect of sonodynamic/HIFU therapy. Int J Nanomedicine. 2019;14:5875–5894. doi:10.2147/IJN.S21218431534329
  • Li C, Zhang N, Zhou J. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Cancer Immunol Res. 2018;6:178–188. doi:10.1158/2326-6066.CIR-17-003529217732
  • Cousin S, Seneschal J, Italiano A. Toxicity profiles of immunotherapy. Pharmacol Ther. 2018;181:91–100. doi:10.1016/j.pharmthera.2017.07.00528716652
  • Zahran E, Risha E, AbdelHamid F. Effects of dietary astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immune. 2014;38:149–157. doi:10.1016/j.fsi.2014.03.002
  • Xie JH, Jin ML, Morris GA. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr. 2016;29:56,S60–S84.
  • Wang Y, Zhang Q, Chen Y. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 2020;121:109570. doi:10.1016/j.biopha.2019.10957031710893
  • Zhang WM, Ma WR, Zhang J. The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells. Int J Biol Macromol. 2017;105:852–861. doi:10.1016/j.ijbiomac.2017.07.10828732726
  • Chuang C-C, Cheng C-C, Chen P-Y. gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int J Nanomedicine. 2019;14:181–193. doi:10.2147/IJN.S17785130613145
  • McLaughlan JR, Cowell DMJ, Freear S. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy. Phys Med Biol. 2018;63:015004. doi:10.1088/1361-6560/aa97e9
  • Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10:299–320. doi:10.2217/nnm.14.16925600972
  • Cui Hand YX. Enhanced-heating effect during photoacoustic imaging-guided high-intensity focused ultrasound. Appl Phys Lett. 2012;99:231113.
  • Xu S, Wusiman A, Liu Z. pH-responsive Astragalus polysaccharides-loaded poly (lactic-co-glycolic acid) nanoparticles and their in vitro immunogenicity. Int J Biol Macromol. 2019;125:865–875. doi:10.1016/j.ijbiomac.2018.12.15630576729
  • Zolnik BS, Burgess DJ. Effect of acidic pH on PLGA microsphere degradation and release. J Control Release. 2007;122:338–344. doi:10.1016/j.jconrel.2007.05.03417644208
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–151. doi:10.1016/j.addr.2010.04.00920441782
  • Zhang W, Shou W-D, Xu Y-J. Low-frequency ultrasound-induced VEGF suppression and synergy with dendritic cell-mediated anti-tumor immunity in murine prostate cancer cells in vitro. Sci Rep. 2017;7:5778. doi:10.1038/s41598-017-06242-828720900
  • LI F, Wang Z, Du Y. Study on therapeutic dosimetry of HIFU ablation tissue. J Biomed Eng. 2006;23(4):839–843.
  • Yin SY, Wang CY, Yang NS. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage. Exp Cell Res. 2011;317:2210–2221. doi:10.1016/j.yexcr.2011.06.01321741972
  • Mauri G, Sconfienza LM, Pescatori LC. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: a systematic review and meta-analysis. Eur Radiol. 2017;27:3199–3210. doi:10.1007/s00330-016-4668-928050693
  • Mauri G, Nicosia L, Xu Z. Focused ultrasound: tumour ablation and its potential to enhance immunological therapy to cancer. Br J Radiol. 2018;91:20170641. doi:10.1259/bjr.2017064129168922
  • Danhier F, Ansorena E. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–522. doi:10.1016/j.jconrel.2012.01.04322353619
  • Zhang N, Song J, Liu Y. Photothermal therapy mediated by phase-transformation nanoparticles facilitates delivery of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. J Control Release. 2019;306:15–28. doi:10.1016/j.jconrel.2019.05.03631132380
  • Sadeghi-Goughari M, Jeon S, Kwon HJ. Enhancing thermal effect of focused ultrasound therapy using gold nanoparticles. IEEE Trans Nanobiosci. 2019;18:661–668. doi:10.1109/TNB.2019.2937327
  • Fan H, Cun JP, Zhao W. Factors affecting effects of ultrasound guided high intensity focused ultrasound for single uterine fibroids: a retrospective analysis. Int J Hyperthermia. 2018;35:1–7. doi:10.1080/02656736.2018.1511837
  • Devarakonda SB, Myers MR, Lanier M. Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure. Nano Lett. 2017;17:2532–2538. doi:10.1021/acs.nanolett.7b0027228287747
  • Proietto AI, van DS, Zhou P. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA. 2008;105:19869–19874. doi:10.1073/pnas.081026810519073916
  • Wu Y, Li YY, Liu C. Structural characterization of an acidic Epimedium polysaccharide and its immune-enhancement activity. Carbohyd Polym. 2016;138:134–142. doi:10.1016/j.carbpol.2015.11.014
  • Franz G. Polysaccharides in pharmacy: current Applications and Future concepts. Planta Med. 1989;55:493–497. doi:10.1055/s-2006-9620782694198
  • Jin M, Zhao K, Huang Q, Shang P. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. Int J Biol Macromol. 2014;64:257–266. doi:10.1016/j.ijbiomac.2013.12.00224325861
  • Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis. 1999;5:285–294. doi:10.1097/00054725-199911000-0000910579123
  • Watt WC, Cecil DL, Disis ML. Selection of epitopes from self-antigens for eliciting Th2 or Th1 activity in the treatment of autoimmune disease or cancer. Semin Immunopathol. 2016;39:245–253. doi:10.1007/s00281-016-0596-727975138
  • De Jong EC, Smits HH, Kapsenberg ML. Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol. 2004;26:289–307. doi:10.1007/s00281-004-0167-115609003
  • Wang X, Qin J, Chen J. The effect of high-intensity focused ultrasound treatment on immune function in patients with uterine fibroids. Int J Hyperthermia. 2013;29:225–233. doi:10.3109/02656736.2013.77567223537008
  • Matías J, Brotons A, Cenoz S. Oral immunogenicity in mice and sows of enterotoxigenic escherichia coli outer-membrane vesicles incorporated into zein-based nanoparticles. Vaccines. 2019;8:E11. doi:10.3390/vaccines801001131906120