192
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Targeted Prodrug-Based Self-Assembled Nanoparticles for Cancer Therapy

, , , , , , & ORCID Icon show all
Pages 2921-2933 | Published online: 24 Apr 2020

References

  • Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev. 2017;118:65–77. doi:10.1016/j.addr.2017.06.01328676386
  • Ruparelia KC, Zeka K, Ijaz T, et al. The synthesis of chalcones as anticancer prodrugs and their bioactivation in cyp1 expressing breast cancer cells. Med Chem. 2018;14(4):322–332. doi:10.2174/157340641466618011212013429332599
  • Wang Y, Cheetham AG, Angacian G, et al. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017;110-111:112–126. doi:10.1016/j.addr.2016.06.01527370248
  • Lee MH, Sharma A, Chang MJ, et al. Fluorogenic reaction-based prodrug conjugates as targeted cancer theranostics. Chem Soc Rev. 2018;47(1):28–52. doi:10.1039/c7cs00557a29057403
  • Li H, Zhang P, Luo J, et al. Chondroitin sulfate-linked prodrug nanoparticles target the golgi apparatus for cancer metastasis treatment. ACS Nano. 2019;13(8):9386–9396. doi:10.1021/acsnano.9b0416631375027
  • Barhoumi A, Wang W, Zurakowski D, et al. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014;14(7):3697–3701. doi:10.1021/nl403733z24884872
  • Kalam MA, Alshamsan A. Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes. Biomed Pharmacother. 2017;94:402–411. doi:10.1016/j.biopha.2017.07.11028772219
  • Xiao H, Guo Y, Liu H, et al. Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy. Biomaterials. 2019;232:119701. doi:10.1016/j.biomaterials.2019.11970131901505
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi:10.1038/nrc.2016.10827834398
  • Jing F, Guo Q, Xu W, et al. Docetaxel prodrug self-assembled nanosystem: synthesis, formulation and cytotoxicity. Bioorg Med Chem Lett. 2018;28(4):826–830. doi:10.1016/j.bmcl.2017.07.04129395972
  • Zhang H, Zhu Y, Sun C, et al. GSH responsive nanomedicines self-assembled from small molecule prodrug alleviate the toxicity of cardiac glycosides as potent cancer drugs. Int J Pharm. 2019;575:118980. doi:10.1016/j.ijpharm.2019.11898031899320
  • Cui D, Huang J, Zhen X, et al. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew Chem Int Ed Engl. 2019;58(18):5920–5924. doi:10.1002/anie.20181473030793456
  • Nishimura T, Sasaki Y, Akiyoshi K. Biotransporting self-assembled nanofactories using polymer vesicles with molecular permeability for enzyme prodrug cancer therapy. Adv Mater. 2017;29(36):24–43. doi:10.1002/adma.201702406
  • Dai L, Si C. Recent advances on cellulose-based nano-drug delivery systems: design of prodrugs and nanoparticles. Curr Med Chem. 2019;26(14):2410–2429. doi:10.2174/092986732466617071113135328699504
  • Li H, Zhao Y, Jia Y, et al. Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy. Chem Commun. 2019;55(100):15057–15060. doi:10.1039/c9cc08294h
  • Wang Y, Huang P, Hu M, et al. Self-delivery nanoparticles of amphiphilic methotrexate-gemcitabine prodrug for synergistic combination chemotherapy via effect of deoxyribonucleotide pools. Bioconjug Chem. 2016;27(11):2722–2733. doi:10.1021/acs.bioconjchem.6b0050327723981
  • Dong S, He J, Sun Y, et al. Efficient click synthesis of a protonized and reduction-sensitive amphiphilic small-molecule prodrug containing camptothecin and gemcitabine for a drug self-delivery system. Mol Pharm. 2019;16(9):3770–3779. doi:10.1021/acs.molpharmaceut.9b0034931348660
  • Huang P, Wang DL, Su Y, et al. Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc. 2014;136(33):11748–11756. doi:10.1021/ja505212y25078892
  • Tekade RK, Sun X. The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today. 2017;22(11):1637–1653. doi:10.1016/j.drudis.2017.08.00328843632
  • Hamann I, Krys D, Glubrecht D, et al. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer-effects of hypoxia. FASEB J. 2018;32(9):5104–5118. doi:10.1096/fj.201800360R29913554
  • Rivenzon-Segal D, Boldin-Adamsky S, Seger D, et al. Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer. 2003;107(2):177–182. doi:10.1002/ijc.1138712949791
  • Almahmoud S, Wang X, Vennerstrom JL, et al. Conformational studies of glucose transporter 1 (GLUT1) as an anticancer drug target. Molecules. 2019;24(11):E2159. doi:10.3390/molecules2411215931181707
  • Pawar S, Vavia P. Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin. J Drug Target. 2016;24(1):68–79. doi:10.3109/1061186X.2015.105557226152812
  • Pawar S, Shevalkar G, Vavia P. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation. J Drug Target. 2016;24(8):730–743. doi:10.3109/1061186X.2016.115456026878084
  • Pawar SK, Vavia P. Efficacy Interactions of PEG-DOX-N-acetyl glucosamine prodrug conjugate for anticancer therapy. Eur J Pharm Biopharm. 2015;97(2):454–463. doi:10.1016/j.ejpb.2015.07.01926614563
  • Shan L, Cui S, Du C, et al. A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Biomaterials. 2012;33(1):146–162. doi:10.1016/j.biomaterials.2011.09.02521959006
  • Shan L, Zhuo X, Zhang F, et al. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy. Theranostics. 2018;8(7):2018–2030. doi:10.7150/thno.2438229556370
  • Tang J, Yao J, Shi J, et al. Synthesis, characterization, drug-loading capacity and safety of novel pH-independent amphiphilic amino acid copolymer micelles. Pharmazie. 2012;67(9):756–764.23016447
  • Klein S, Seeger N, Mehta R, et al. Robustness of barrier membrane coated metoprolol tartrate matrix tablets: drug release evaluation under physiologically relevant in vitro conditions. Int J Pharm. 2018;543(1–2):368–375. doi:10.1016/j.ijpharm.2018.04.00529630933
  • Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumor targeted drug delivery: A review. Biomaterials. 2016;85:152–167. doi:10.1016/j.biomaterials26871891
  • Shan L, Fan W, Wang W, et al. Organosilica-based hollow mesoporous bilirubin nanoparticles for antioxidation-activated self-protection and tumor-specific deoxygenation-driven synergistic therapy. ACS Nano. 2019;13(8):8903–8916. doi:10.1021/acsnano.9b0247731374171
  • Feng J, Feng T, Yang C, et al. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques. Apoptosis. 2018;23(5–6):290–298. doi:10.1007/s10495-018-1454-y29663099
  • Blagih J, Zani F, Chakravarty P, et al. Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Rep. 2020;30(2):481–496. doi:10.1016/j.celrep.2019.12.02831940491
  • Shan L, Liu M, Wu C, et al. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy. Int J Nanomed. 2015;10:5571–5591. doi:10.2147/IJN.S85402
  • Kolesnik DL, Pyaskovskaya ON, Yakshibaeva YR, et al. Time-dependent cytotoxicity of dichloroacetate and metformin against Lewis lung carcinoma. Exp Oncol. 2019;41(1):14–19.30932416
  • Wallberg F, Tenev T, Meier P. Time-lapse imaging of cell death. Cold Spring Harb Protoc. 2016;20(3):395–403. doi:10.1101/pdb.prot087395
  • Mishra AK, Mishra A, Pragya, et al. Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil. Regul Toxicol Pharmacol. 2018;98:184–189. doi:10.1016/j.yrtph.2018.07.02730075180
  • Gao J, Chen K, Xie R, et al. In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjug Chem. 2010;21(4):604–609. doi:10.1021/bc900323v20369817
  • Kalyane D, Raval N, Maheshwari R, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252–1276. doi:10.1016/j.msec.2019.01.06630813007
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79. doi:10.1016/j.addr.2012.10.00223088862
  • Sun B, Luo C, Cui W, et al. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J Control Release. 2017;264:145–159. doi:10.1016/j.jconrel.2017.08.03428844757
  • Gao C, Bhattarai P, Chen M, et al. Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjug Chem. 2018;29(12):3967–3981. doi:10.1021/acs.bioconjchem.8b0069230485070
  • Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677–2681. doi:10.1091/mbc.E14-04-091625213191
  • Ma P, Sun Y, Chen J, et al. Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM-camptothecin conjugate. Drug Deliv. 2018;25(1):153–165. doi:10.1080/10717544.2017.141951129282992