241
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Rotating Magnetic Nanoparticle Clusters as Microdevices for Drug Delivery

, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 4105-4123 | Published online: 11 Jun 2020

References

  • Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11(9):1449–1470. doi:10.1517/17425247.2014.92450124870351
  • Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond). 2017;12(1):73–87. doi:10.2217/nnm-2016-031627876448
  • Lee GP, Pernal SP, Shokuhfar T, Engelhard HH. Nanoparticles as therapeutic agents for patients with brain tumors In: Newton H, editor. Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics and Immunotherapy. 2nd ed. San Diego: Academic Press; 2018:229–246.
  • D’Agata F, Ruffinatti FA, Boschi S, et al. Magnetic nanoparticles in the central nervous system: targeting principles, applications and safety issues. Molecules. 2017;23:1. doi:10.3390/molecules23010009
  • Amreddy N, Babu A, Muralidharan R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018;137:115–170. doi:10.1016/bs.acr.2017.11.00329405974
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. doi:10.1186/s40824-019-0166-x31832232
  • Cao Q, Han X, Li L. Enhancement of the efficiency of magnetic targeting for drug delivery: development and evaluation of magnet system. J Magn Magn Mater. 2011;323(15):1919–1924. doi:10.1016/j.jmmm.2010.11.058
  • Shapiro B, Kulkarni S, Nacev A, Muro S, Stepanov PY, Weinberg IN. Open challenges in magnetic drug targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(3):446–457. doi:10.1002/wnan.131125377422
  • Chang M, Lin Y-H, Gabayno JL, Li Q, Liu X. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle. Bioengineered. 2017;8(1):29–35. doi:10.1080/21655979.2016.122714527689864
  • Engelhard HH, Pernal SP, Gaertner ZA, et al. A novel tissue culture tray for the study of magnetically induced rotation and translation of iron oxide nanoparticles. IEEE Magn Lett. 2017;8:1–5. doi:10.1109/LMAG.2017.2761818
  • Pernal S, Willis A, Sabo M, et al. An in vitro model system for evaluating remote magnetic nanoparticle movement and fibrinolysis. Int J Nanomedicine. 2020;15:1549–1568. doi:10.2147/IJN.S23739532210551
  • Zhi D, Yang T, Yang J, Fu S, Zhang S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020;102:13–34. doi:10.1016/j.actbio.2019.11.02731759124
  • Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond). 2014;9(4):501–516. doi:10.2217/NMM.14.5
  • Bayda S, Hadla M, Palazzolo S, et al. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem. 2018;25(34):4269–4303. doi:10.2174/092986732566617122914115629284391
  • Maia FR, Reis RL, Oliveira JM. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine. 2019;24:102139. doi:10.1016/j.nano.2019.10213931843662
  • Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 2009;9(6):2243–2245. doi:10.1021/nl900186w19413293
  • Karle M, Wöhrle J, Miwa J, et al. Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluidics. 2011;10(4):935–939. doi:10.1007/s10404-010-0727-8
  • Singh H, Laibinis PE, Hatton TA. Rigid, superparamagnetic chains of permanently linked beads coated with magnetic nanoparticles: synthesis and rotational dynamics under applied magnetic fields. Langmuir. 2005;21(24):11500–11509. doi:10.1021/la051784316285833
  • Kang TG, Hulsen MA, Anderson PD, den Toonder JMJ, Meijer HEH. Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Phys Rev E. 2007;76(6):066303. doi:10.1103/PhysRevE.76.066303
  • Petousis I, Homburg E, Derks R, Dietzel A. Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip. 2007;7(12):1746. doi:10.1039/b713735b18030396
  • Roy T, Sinha A, Chakraborty S, Ganguly R, Puri IK. Magnetic microsphere-based mixers for microdroplets. Phys Fluids. 2009;21(2):027101. doi:10.1063/1.3072602
  • Wilson RJ, Hu W, Fu CW, et al. Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells. J Magn Magn Mater. 2009;321(10):1452–1458. doi:10.1016/j.jmmm.2009.02.06620161001
  • Mørup S, Hansen MF, Frandsen C. Magnetic interactions between nanoparticles. Beilstein J Nanotechnol. 2010;1:182–190. doi:10.3762/bjnano.1.2221977409
  • Ganguly R, Puri IK. Microfluidic transport in magnetic MEMS and bioMEMS. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):382–399. doi:10.1002/wnan.9220564547
  • Etheridge ML, Hurley KR, Zhang J, et al. Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology (Singap World Sci). 2014;2(3):214–228. doi:10.1142/S233954781450019825379513
  • Wang C, Hsu CH, Li Z, et al. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia. Int J Nanomedicine. 2017;12:6273–6287. doi:10.2147/IJN.S14107228894366
  • Gädke J, Thies J-W, Kleinfeldt L, et al. Selective manipulation of superparamagnetic nanoparticles for product purification and microfluidic diagnostics. Eur J Pharm Biopharm. 2018;126:67–74. doi:10.1016/j.ejpb.2017.09.00828917535
  • Guibert C, Dupuis V, Peyre V, Fresnais J. Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C. 2015;119(50):28148–28154. doi:10.1021/acs.jpcc.5b07796
  • Ramaswamy B, Kulkarni SD, Villar PS, et al. Movement of magnetic nanoparticles in brain tissue: mechanisms and impact on normal neuronal function. Nanomedicine. 2015;11(7):1821–1829. doi:10.1016/j.nano.2015.06.00326115639
  • Mair LO, Weinberg IN, Nacev A, et al. Analysis of driven nanorod transport through a biopolymer matrix. J Magn Magn Mater. 2015;380:295–298. doi:10.1016/j.jmmm.2014.09.05925678734
  • Soheilian R, Choi YS, David AE, Abdi H, Maloney CE, Erb RM. Toward accumulation of magnetic nanoparticles into tissues of small porosity. Langmuir. 2015;31(30):8267–8274. doi:10.1021/acs.langmuir.5b0145826145706
  • Engelhard H, Gaertner Z, Levin A, et al. Rotating magnetic beads for enhanced drug delivery: characterization of bead velocity, imaging, and adherence to cellular monolayers, abstract 3104. Am Assoc Cancer Res. 2017;3104. doi:10.1158/1538-7445.AM2017-3104
  • Pouponneau P, Leroux J-C, Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials. 2009;30(31):6327–6332. doi:10.1016/j.biomaterials.2009.08.00519695700
  • Pernal SP, Willis AJ, Engelhard HH. Magnetic nanoparticles (MNPs) for cancer drug delivery: the value of in vitro modeling, abstract 4661. Am Assoc Cancer Res. 2018;4661. doi:10.1158/1538-7445.AM2018-4661
  • Cao Q, Han X, Li L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip. 2014;14(15):2762–2777. doi:10.1039/c4lc00367e24903572
  • Pajtler KW, Tippelt S, Siegler N, et al. Intraventricular etoposide safety and toxicity profile in children and young adults with refractory or recurrent malignant brain tumors. J Neurooncol. 2016;128(3):463–471. doi:10.1007/s11060-016-2133-x27147083
  • Venugopal I, Pernal S, Duproz A, Bentley J, Engelhard H, Linninger A. Magnetic field-enhanced cellular uptake of doxorubicin loaded magnetic nanoparticles for tumor treatment. Mater Res Express. 2016;3(9):095010. doi:10.1088/2053-1591/3/9/095010
  • Sarwar A, Nemirovski A, Shapiro B. Optimal halbach permanent magnet designs for maximally pulling and pushing nanoparticles. J Magn Magn Mater. 2012;324(5):742–754. doi:10.1016/j.jmmm.2011.09.00823335834
  • Zhu Q, Jiang L, Wang X. The expression of duffy antigen receptor for chemokines by epithelial ovarian cancer decreases growth potential. Oncol Lett. 2017;13(6):4302–4306. doi:10.3892/ol.2017.595428599431
  • Fountain TWR, Kailat PV, Abbott JJ Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. In: 2010 IEEE International Conference on Robotics and Automation; 2010; Anchorage, AK: IEEE: 576–581. doi:10.1109/ROBOT.2010.5509245
  • Cheng R, Huang W, Huang L, et al. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano. 2014;8(8):7746–7754. doi:10.1021/nn502995525006696
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008;105(38):14265–14270. doi:10.1073/pnas.080513510518809927
  • Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–5768. doi:10.1021/ja910675v20356039
  • Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–2799. doi:10.1039/c1cs15233e22086677
  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc. 2013;135(4):1438–1444. doi:10.1021/ja309812z23301582
  • Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF. The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials. 2014;35(24):6389–6399. doi:10.1016/j.biomaterials.2014.04.00924816288
  • Docter D, Strieth S, Westmeier D, et al. No king without a crown--impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine (Lond). 2015;10(3):503–519. doi:10.2217/nnm.14.18425707981
  • Raesch SS, Tenzer S, Storck W, et al. Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano. 2015;9(12):11872–11885. doi:10.1021/acsnano.5b0421526575243
  • Yang H, Wang M, Zhang Y, et al. Detailed insight into the formation of protein corona: conformational change, stability and aggregation. Int J Biol Macromol. 2019;135:1114–1122. doi:10.1016/j.ijbiomac.2019.06.01431173836
  • Gräfe C, von der Lühe M, Weidner A, et al. Protein corona formation and its constitutional changes on magnetic nanoparticles in serum featuring a polydehydroalanine coating: effects of charge and incubation conditions. Nanotechnology. 2019;30(26):265707. doi:10.1088/1361-6528/ab0ed030861506
  • Hanot CC, Choi YS, Anani TB, Soundarrajan D, David AE. Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci. 2015;17:1. doi:10.3390/ijms17010054
  • Sobczynski DJ, Charoenphol P, Heslinga MJ, et al. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner. PLoS One. 2014;9(9):e107408. doi:10.1371/journal.pone.010740825229244
  • Villanueva A, Cañete M, Roca AG, et al. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology. 2009;20(11):115103. doi:10.1088/0957-4484/20/11/11510319420433
  • Tsai ZT, Tsai FY, Yang WC, et al. Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent. Mar Drugs. 2012;10(11):2403–2414. doi:10.3390/md1011240323203267
  • Luengo Y, Nardecchia S, Morales MP, Serrano MC. Different cell responses induced by exposure to maghemite nanoparticles. Nanoscale. 2013;5(23):11428–11437. doi:10.1039/c3nr02148c23963338
  • Arcella A, Palchetti S, Digiacomo L, et al. Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem Neurosci. 2018;9(12):3166–3174. doi:10.1021/acschemneuro.8b0033930015470
  • Vogt C, Pernemalm M, Kohonen P, et al. Proteomics analysis reveals distinct corona composition on magnetic nanoparticles with different surface coatings: implications for interactions with primary human macrophages. PLoS One. 2015;10(10):e0129008. doi:10.1371/journal.pone.012900826444829
  • Gräfe C, Weidner A, Lühe MV, et al. Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction. Int J Biochem Cell Biol. 2016;75:196–202. doi:10.1016/j.biocel.2015.11.00526556312
  • Grumezescu V, Gherasim O, Negut I, et al. Nanomagnetite-embedded PLGA spheres for multipurpose medical applications. Materials (Basel). 2019;12(16). doi:10.3390/ma12162521
  • Xing R, Wang X, Zhang C, et al. Superparamagnetic magnetite nanocrystal clusters as potential magnetic carriers for the delivery of platinum anticancer drugs. J Mater Chem. 2011;21(30):11142. doi:10.1039/c1jm11369k
  • Sundaresan V, Menon JU, Rahimi M, Nguyen KT, Wadajkar AS. Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int J Pharm. 2014;466(1–2):1–7. doi:10.1016/j.ijpharm.2014.03.01624607216
  • Cicha I, Scheffler L, Ebenau A, Lyer S, Alexiou C, Goppelt-Struebe M. Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: uptake and toxicity in primary human tubular epithelial cells. Nanotoxicology. 2016;10(5):557–566. doi:10.3109/17435390.2015.109536426468004
  • Liu M-C, Jin S-F, Zheng M, et al. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: preparation, magnetic targeting, cell cytotoxicity, and protein delivery research. J Biomater Appl. 2016;31(2):261–272. doi:10.1177/088532821665442527288463
  • Alexiou C, Jurgons R, Schmid RJ, et al. Magnetic drug targeting--biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target. 2003;11(3):139–149. doi:10.1080/106118603100015079113129824
  • Pouponneau P, Soulez G, Beaudoin G, Leroux J-C, Martel S. MR imaging of therapeutic magnetic microcarriers guided by magnetic resonance navigation for targeted liver chemoembolization. Cardiovasc Intervent Radiol. 2014;37(3):784–790. doi:10.1007/s00270-013-0770-424196271
  • Zhang H, Liu XL, Zhang YF, et al. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci. 2018;61(4):400–414. doi:10.1007/s11427-017-9271-129675551
  • Kim S, Qiu F, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater Weinheim. 2013;25(41):5863–5868. doi:10.1002/adma.20130148423864519
  • Sun M, Fan X, Meng X, et al. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale. 2019;11(39):18382–18392. doi:10.1039/c9nr06221a31573587
  • Mair LO, Evans BA, Nacev A, et al. Magnetic microkayaks: propulsion of microrods precessing near a surface by kilohertz frequency, rotating magnetic fields. Nanoscale. 2017;9(10):3375–3381. doi:10.1039/c6nr09459g28229134
  • Mair LO, Chowdhury S, Paredes-Juarez GA, et al. Magnetically aligned nanorods in alginate capsules (maniacs): soft matter tumbling robots for manipulation and drug delivery. Micromachines. 2019;10(4). doi:10.3390/mi10040230
  • Lee S, Kim S, Nelson B, Choi H Fabrication and targeted particle delivery using microrobots. 12th International Conference on Ubiquitous Robots and Ambient Intelligence Goyang City, Korea, 10 2015.
  • Bonnecaze R, Clements M Multi-scale model of magnetically-driven flows in dead-end channels. XXIV ICTAM; 8; 2016; Montreal, Canada.
  • Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468(3):463–470. doi:10.1016/j.bbrc.2015.08.02226271592
  • Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: a primer for physicians and pharmacists. SAGE Open Med. 2013;1:2050312113513759. doi:10.1177/205031211351375926770691
  • Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJPPS. 2014. doi:10.15226/2374-6866/1/2/00109
  • Engelhard HH, Petruska DA. Imaging and movement of iron-oxide-bound antibody microparticles in brain and cerebrospinal fluid. Cancer Biochem Biophys. 1992;13(1):1–12.1343842
  • Venugopal I, Habib N, Linninger A. Intrathecal magnetic drug targeting for localized delivery of therapeutics in the CNS. Nanomedicine (Lond). 2017;12(8):865–877. doi:10.2217/nnm-2016-041828339319
  • Husain SF, Lam RWM, Hu T, et al. Locating the site of neuropathic pain in vivo using MMP-12-targeted magnetic nanoparticles. Pain Res Manag. 2019;2019:9394715. doi:10.1155/2019/939471530956741
  • Huang L, Wang J, Huang S, Siaw-Debrah F, Nyanzu M, Zhuge Q. Polyacrylic acid-coated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke. Biochem Biophys Res Commun. 2019;516(2):565–570. doi:10.1016/j.bbrc.2019.06.07931235258
  • Nacev A, Komaee A, Sarwar A, et al. Towards control of magnetic fluids in patients: directing therapeutic nanoparticles to disease locations. IEEE Control Syst. 2012;32(3):32–74. doi:10.1109/MCS.2012.2189052
  • Creighton FM, Ritter RC, Werp P. Focused magnetic navigation using optimized magnets for medical therapies. Magnetics Conference, 2005. INTERMAG Asia 2005. Digests of the IEEE International; 2005 pp. 1253–1254.
  • Creighton FM Optimal distribution of magnetic material for catheter and guidewire cardiology therapies. Magnetics Conference, 2006. INTERMAG 2006 IEEE International; 2006 pp. 111.
  • Shamsi M, Sedaghatkish A, Dejam M, Saghafian M, Mohammadi M, Sanati-Nezhad A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv. 2018;25(1):846–861. doi:10.1080/10717544.2018.145576429589479
  • Haun JB, Hammer DA. Quantifying nanoparticle adhesion mediated by specific molecular interactions. Langmuir. 2008;24(16):8821–8832. doi:10.1021/la800584418630976
  • Kim MJ, Rhee K. Computational analysis of nanoparticle adhesion to endothelium: effects of kinetic rate constants and wall shear rates. Med Biol Eng Comput. 2011;49(7):733–741. doi:10.1007/s11517-011-0735-121556956
  • Carboni E, Tschudi K, Nam J, Lu X, Ma AWK. Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech. 2014;15(3):762–771. doi:10.1208/s12249-014-0099-624687242
  • Liu D, Hong Y, Li Y, et al. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics. 2020;10(3):1181–1196. doi:10.7150/thno.3898931938059
  • Louguet S, Rousseau B, Epherre R, et al. Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym Chem. 2012;3(6):1408. doi:10.1039/c2py20089a
  • Peiris PM, Abramowski A, McGinnity J, et al. Treatment of invasive brain tumors using a chain-like nanoparticle. Cancer Res. 2015;75(7):1356–1365. doi:10.1158/0008-5472.CAN-14-154025627979
  • Barshes N, Demopoulos A, Engelhard HH. Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res. 2005;125:1–16. doi:10.1007/0-387-24199-x_116211880
  • Raja A, Engelhard HH. Animal models of leptomeningeal cancer. Cancer Treat Res. 2005;125:159–179. doi:10.1007/0-387-24199-x_1016211889
  • Willis A, Karumudi B, Liu B, et al. A novel etoposide-bound magnetic nanoparticle for remote targeting of cancer cells. Cancer Res. 2019;79(Suppl 13):2166. doi:10.1158/1538-7445.AM2019-2166
  • Le Rhun E, Preusser M, van den Bent M, Andratschke N, Weller M. How we treat patients with leptomeningeal metastases. ESMO Open. 2019;4(Suppl 2):e000507. doi:10.1136/esmoopen-2019-00050731231573
  • Kwasnicki A, Lakka S, Willis A, et al. Development of a new etoposide-bound magnetic nanoparticle designed to treat medulloblastoma cells disseminated within cerebrospinal fluid pathways. Neuro Oncol. 2019;21(Suppl 2):ii113. doi:10.1093/neuonc/noz036.203
  • Nacev A, Weinberg IN, Stepanov PY, et al. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target. Nano Lett. 2015;15(1):359–364. doi:10.1021/nl503654t25457292