470
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Hybrid Hydrogels for Synergistic Periodontal Antibacterial Treatment with Sustained Drug Release and NIR-Responsive Photothermal Effect

, , , , , & show all
Pages 5377-5387 | Published online: 29 Jul 2020

References

  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3(1):17038. doi:10.1038/nrdp.2017.3828805207
  • Li S, Schmalz G, Schmidt J, et al. Antimicrobial peptides as a possible interlink between periodontal diseases and its risk factors: a systematic review. J Periodontal Res. 2018;53(2):145–155. doi:10.1111/jre.1248228990193
  • Oliveira RRDS, Fermiano D, Feres M, et al. Levels of candidate periodontal pathogens in subgingival biofilm. J Dent Res. 2016;95(6):711–718. doi:10.1177/002203451663461926936213
  • Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46(4):336–344. doi:10.1038/ng.290624562188
  • Zupančič Š, Casula L, Rijavec T, et al. Sustained release of antimicrobials from double-layer nanofiber mats for local treatment of periodontal disease, evaluated using a new micro flow-through apparatus. J Control Release. 2019;316:223–235. doi:10.1016/j.jconrel.2019.10.00831669567
  • Keestra JAJ, Grosjean I, Coucke W, et al. Non-surgical periodontal therapy with systemic antibiotics in patients with untreated chronic periodontitis: a systematic review and meta-analysis. J Periodontal Res. 2015;50(3):294–314. doi:10.1111/jre.1222125142259
  • Rajeshwari HR, Dhamecha D, Jagwani S, et al. Local drug delivery systems in the management of periodontitis: a scientific review. J Control Release. 2019;307:393–409. doi:10.1016/j.jconrel.2019.06.03831255689
  • Sarwar H, Khalid HM, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18. doi:10.1016/j.jare.2018.06.00530581608
  • Liu J, Luo Z, Zhang J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials. 2016;83:51–65. doi:10.1016/j.biomaterials.2016.01.00826773665
  • Shen Y, Li M, Liu T, et al. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomedicine. 2019;14:4029–4044. doi:10.2147/IJN.S20168831213813
  • Hernández MA, Llopis-Lorente A, Gorbe M, et al. Janus gold nanostars-mesoporous silica nanoparticles for NIR-light-triggered drug delivery. Chemistry. 2019;25:8471–8478. doi:10.1002/chem.20190075031012155
  • Huang L, Wu J, Liu M, et al. Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery. J Colloid Interface Sci. 2017;508:396–404. doi:10.1016/j.jcis.2017.08.07128843929
  • Cui J, Sun B, Lin T, et al. Enzyme shielding by mesoporous organosilica shell on Fe3O4@silica yolk-shell nanospheres. Int J Biol Macromol. 2018;117:673–682. doi:10.1016/j.ijbiomac.2018.05.22729859841
  • Lin H, Wang Y, Gao S, et al. Theranostic 2D TANTALUM carbide (MXene). Adv Mater Weinheim. 2018;30(4):1703284. doi:10.1002/adma.201703284
  • Shao J, Ruan C, Xie H, et al. Black-Phosphorus-Incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv Sci. 2018;5(5):1700848. doi:10.1002/advs.201700848
  • Liu Y, Guo Z, Li F, et al. Multifunctional magnetic copper ferrite nanoparticles as fenton-like reaction and near-infrared photothermal agents for synergetic antibacterial therapy. ACS Appl Mater Interfaces. 2019;11(35):31649–31660. doi:10.1021/acsami.9b1009631407880
  • Li C, Mei E, Chen C, et al. Gold-nanobipyramid-based nanotheranostics for dual-modality imaging-guided phototherapy. ACS Appl Mater Interfaces. 2020;12(11):12541–12548. doi:10.1021/acsami.0c0011232083461
  • Feng J, Chen L, Xia Y, et al. Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast cancer. ACS Biomater Sci Eng. 2017;3(4):608–618. doi:10.1021/acsbiomaterials.7b00021
  • Feng J, Wang Z, Shen B, et al. Effects of template removal on both morphology of mesoporous silica-coated gold nanorod and its biomedical application. RSC Adv. 2014;4(54):28683. doi:10.1039/c4ra03122a
  • Zhou L, Liu Z, Zhang H, et al. Site-specific growth of AgPd nanodendrites on highly purified Au bipyramids with remarkable catalytic performance. Nanoscale. 2014;6(21):12971–12980. doi:10.1039/c4nr04190a25232660
  • Liu J, Liang H, Li M, et al. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials. 2018;157:107–124. doi:10.1016/j.biomaterials.2017.12.00329268142
  • Park J-S, Lim Y-M, Baik J, et al. Preparation and evaluation of β -glucan hydrogel prepared by the radiation technique for drug carrier applications. Int J Biol Macromol. 2018;118:333–339. doi:10.1016/j.ijbiomac.2018.06.06829909030
  • Zhou J, Yao D, Qian Z, et al. Bacteria-responsive intelligent wound dressing: simultaneous In situ detection and inhibition of bacterial infection for accelerated wound healing. Biomaterials. 2018;161:11–23. doi:10.1016/j.biomaterials.2018.01.02429421548
  • Choi JR, Yong KW, Choi JY, et al. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques. 2019;66(1):40–53. doi:10.2144/btn-2018-008330730212
  • Chateau D, Liotta A, Vadcard F, et al. From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects. Nanoscale. 2015;7(5):1934–1943. doi:10.1039/c4nr06323f25530122
  • Campu A, Lerouge F, Chateau D, et al. Gold nanobipyramids performing as highly sensitive dual-modal optical immunosensors. Anal Chem. 2018;90(14):8567–8575. doi:10.1021/acs.analchem.8b0168929902917
  • Wang J, Wang S, Mi L, et al. Aspect ratio dependence of the enhancement of fluorescence intensity by gold nanobipyramids for cancer cell imaging and photodynamic therapy. Laser Phys. 2018;28(7):075602. doi:10.1088/1555-6611/aabdb2
  • Kang Y-F, Zheng B, Li C-Y, et al. Real-time monitoring of temperature variations around a gold nanobipyramid targeted cancer cell under photothermal heating by actively manipulating an optically trapped luminescent upconversion microparticle. Anal Chem. 2020;92(1):1292–1300. doi:10.1021/acs.analchem.9b0447031855416
  • Dolinina ES, Akimsheva EY, Parfenyuk EV. Development of novel silica-based formulation of α-lipoic acid: evaluation of photo and thermal stability of the encapsulated drug. Pharmaceutics. 2020;12(3):228. doi:10.3390/pharmaceutics12030228
  • Zhu M, Wang Y, Ferracci G, et al. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9(1):6863. doi:10.1038/s41598-019-42186-x31053756
  • Boulos L, Prévost M, Barbeau B, et al. LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods. 1999;37(1):77–86. doi:10.1016/s0167-7012(99)00048-210395466
  • Rao W, Li Q, Wang Y, et al. Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods. ACS Nano. 2015;9(3):2783–2791. doi:10.1021/nn506689b25665929
  • Zhao Q, Wang X, Yan Y, et al. The advantage of hollow mesoporous carbon as a near-infrared absorbing drug carrier in chemo-photothermal therapy compared with IR-820. Eur J Pharm Sci. 2017;99:66–74. doi:10.1016/j.ejps.2016.11.03127916695
  • Teng CP, Zhou T, Ye E, et al. Effective targeted photothermal ablation of multidrug resistant bacteria and their biofilms with nir-absorbing gold nanocrosses. Adv Health Mater. 2016;5(16):2122–2130. doi:10.1002/adhm.201600346
  • Li M, Liu X, Tan L, et al. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomater Sci. 2018;6(8):2110–2121. doi:10.1039/c8bm00499d29882566
  • Wu S, Li A, Zhao X, et al. Silica-coated gold–silver nanocages as photothermal antibacterial agents for combined anti-infective therapy. ACS Appl Mater Interfaces. 2019;11(19):17177–17183. doi:10.1021/acsami.9b0114930997794
  • Zhu X, Feng W, Chang J, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun. 2016;7(1):10437. doi:10.1038/ncomms1043726842674
  • Xu J-W, Yao K, Xu Z-K. Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale. 2019;11(18):8680–8691. doi:10.1039/c9nr01833f31012895
  • Wang S-G, Chen Y-C, Chen Y-C. Antibacterial gold nanoparticle-based photothermal killing of vancomycin-resistant bacteria. Nanomedicine. 2018;13(12):1405–1416. doi:10.2217/nnm-2017-038029972649
  • Zhang L, Wang Y, Wang J, et al. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection. ACS Appl Mater Interfaces. 2019;11(1):300–310. doi:10.1021/acsami.8b1814630520301
  • Lee B, Lum N, Seow L, et al. Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications. Materials. 2016;9(10):797–810. doi:10.3390/ma9100797
  • Rehman SRU, Augustine R, Zahid AA, et al. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine. 2019;14:9603–9617. doi:10.2147/IJN.S21812031824154