853
Views
34
CrossRef citations to date
0
Altmetric
Original Research

Oxygen Generating Polymeric Nano Fibers That Stimulate Angiogenesis and Show Efficient Wound Healing in a Diabetic Wound Model

, , ORCID Icon, , , , , , , ORCID Icon & show all
Pages 3511-3522 | Published online: 18 May 2020

References

  • Al-Lawati JA. Diabetes mellitus: a local and global public health emergency! Oman Med J. 2018;32(3):177–179. doi:10.5001/omj.2017.34
  • Siddiqui AR, Bernstein JM. Chronic wound infection: facts and controversies. Clin Dermatol. 2010;28(5):519–526. doi:10.1016/j.clindermatol.2010.03.00920797512
  • Zhang P, Lu J, Jing Y, et al. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med. 2017;49(2):106–116. doi:10.1080/07853890.2016.123193227585063
  • Moxey P, Gogalniceanu P, Hinchliffe R, et al. Lower extremity amputations—a review of global variability in incidence. Diabet Med. 2011;28(10):1144–1153. doi:10.1111/j.1464-5491.2011.03279.x21388445
  • Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering (Basel). 2018;5(3):51. doi:10.3390/bioengineering5030051
  • Tsourdi E, Barthel A, Rietzsch H, et al. Current aspects in the pathophysiology and treatment of chronic wounds in diabetes mellitus. Biomed Res Int. 2013;2013:385641. doi:10.1155/2013/38564123653894
  • Zhao R, Liang H, Clarke E, et al. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085. doi:10.3390/ijms17122085
  • Castilla DM, Liu ZJ, Velazquez OC. Oxygen: implications for wound healing. Adv Wound Care. 2012;1(6):225–230. doi:10.1089/wound.2011.0319
  • Hong WX, Hu MS, Esquivel M, et al. The role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle). 2014;3(5):390–399. doi:10.1089/wound.2013.052024804159
  • Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A. 2008;105(49):19426–19431. doi:10.1073/pnas.080523010519057015
  • Chandra PK, Ross CL, Smith LC, et al. Peroxide‐based oxygen generating topical wound dressing for enhancing healing of dermal wounds. Wound Repair Regen. 2015;23(6):830–841. doi:10.1111/wrr.1232426053405
  • Jude E, Apelqvist J, Spraul M, et al. Prospective randomized controlled study of Hydrofiber® dressing containing ionic silver or calcium alginate dressings in non‐ischaemic diabetic foot ulcers. Diabet Med. 2007;24(3):280–288. doi:10.1111/j.1464-5491.2007.02079.x17305788
  • Opasanon S, Muangman P, Namviriyachote N. Clinical effectiveness of alginate silver dressing in outpatient management of partial‐thickness burns. Int Wound J. 2010;7(6):467–471. doi:10.1111/j.1742-481X.2010.00718.x20860635
  • Desmet CM, Preat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev. 2018;129:262–284. doi:10.1016/j.addr.2018.02.00129448035
  • Wang S, Yin C, Han X, et al. Improved healing of diabetic foot ulcer upon oxygenation therapeutics through oxygen-loading nanoperfluorocarbon triggered by radial extracorporeal shock wave. Oxid Med Cell Longev. 2019;2019:1–10. doi:10.1155/2019/5738368
  • Grip J, Engstad RE, Skjæveland I, et al. Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. Eur J Pharm Sci. 2018;121:269–280. doi:10.1016/j.ejps.2018.05.03129864585
  • Chao FC, Wu MH, Chen LC, et al. Preparation and characterization of chemically TEMPO-oxidized and mechanically disintegrated sacchachitin nanofibers (SCNF) for enhanced diabetic wound healing. Carbohydr Polym. 2020;229:115507. doi:10.1016/j.carbpol.2019.11550731826505
  • Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019;559:23–36. doi:10.1016/j.ijpharm.2019.01.01930668991
  • Ulery BD, Nair LS, Laurencin CT, et al. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–864. doi:10.1002/polb.2225921769165
  • Mondal D, Griffith M, Venkatraman SS, et al. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater. 2016;65(5):255–265. doi:10.1080/00914037.2015.1103241
  • Butt H, Mehmood A, Ali M, et al. Protective role of vitamin E preconditioning of human dermal fibroblasts against thermal stress in vitro. Life Sci. 2017;184:1–9. doi:10.1016/j.lfs.2017.07.00228684064
  • Leyva-García E, Lara-Martínez R, Morán-Zanabria L, et al. Novel insight into streptozotocin-induced diabetic rats from the protein misfolding perspective. Sci Rep. 2017;7(1):11552. doi:10.1038/s41598-017-11776-y28912603
  • Azam M, Dikici S, Roman S, et al. Addition of 2-deoxy-d-ribose to clinically used alginate dressings stimulates angiogenesis and accelerates wound healing in diabetic rats. J Biomater Appl. 2019;34(4):463–475. doi:10.1177/088532821985999131262210
  • Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018;120(PtA):385–393. doi:10.1016/j.ijbiomac.2018.08.05730110603
  • Augustine R, Hasan A, Patan NK, et al. Cerium oxide nanoparticle incorporated electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications. ACS Biomater Sci Eng. 2020;6(1):58–70. doi:10.1021/acsbiomaterials.8b01352
  • Hasan A, Morshed M, Memic A, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637–5655. doi:10.2147/IJN.S15375830288038
  • Shiekh PA, Singh A, Kumar A. Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications. ACS Appl Mater Interfaces. 2018;10(22):18458–18469. doi:10.1021/acsami.8b0173629737151
  • Xiao H, Gu Z, Wang G, et al. The possible mechanisms underlying the impairment of HIF-1α pathway signaling in hyperglycemia and the beneficial effects of certain therapies. Int J Med Sci. 2013;10(10):1412–1421. doi:10.7150/ijms.563023983604
  • Cerychova R, Pavlinkova G. HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne). 2018;9:460. doi:10.3389/fendo.2018.0046030158902
  • Shi YH, Fang WG. Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol. 2004;10(8):1082–1087. doi:10.3748/wjg.v10.i8.108215069703
  • Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412. doi:10.1155/2015/54941226146622
  • Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr. 2015;3:33. doi:10.3389/fped.2015.0003325964891
  • Du Y, Ge Y, Xu Z. Hypoxia-inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF) pathway participates in angiogenesis of myocardial infarction in muscone-treated mice: preliminary study. Med Sci Monit. 2018;24:8870–8877. doi:10.12659/MSM.91205130531686
  • Chen H, Jia P, Kang H. Upregulating Hif‐1α by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv Healthc Mater. 2016;5(8):907–918. doi:10.1002/adhm.20150101826891197
  • Honnegowda TM, Kumar P, Udupa E. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthet Res. 2015;2(4):243–249. doi:10.4103/2347-9264.165438
  • Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–1105. doi:10.1177/194760191142303122866201
  • Guo D, Wang Q, Li CY, et al. VEGF stimulated the angiogenesis by promoting the mitochondrial functions. Oncotarget. 2017;8(44):77020–77027. doi:10.18632/oncotarget.2033129100366
  • Mavrogenis AF, Megaloikonomos PD, Antoniadou T. Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev. 2018;3(9):513–525. doi:10.1302/2058-5241.3.18001030305936
  • Pemayun TG, Naibaho RM, Novitasari D. Risk factors for lower extremity amputation in patients with diabetic foot ulcers: a hospital-based case–control study. Diabet Foot Ankle. 2015;6(1):29629. doi:10.3402/dfa.v6.2962926651032
  • Ochoa M Laser-processed parchment paper for fabrication of chronic wound dressings with selective oxygenation [Open Access Dissertations]. Purdue University; 2016:980.
  • Wu H, Li F, Shao W, et al. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent Sci. 2019;5(3):477–485. doi:10.1021/acscentsci.8b0085030937375