1,369
Views
79
CrossRef citations to date
0
Altmetric
Review

Smart Hydrogels – Synthetic Stimuli-Responsive Antitumor Drug Release Systems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4541-4572 | Published online: 25 Jun 2020

References

  • Amin MCIM, Ahmad N, Pandey M, Abeer MM, Mohamad N. Recent advances in the role of supramolecular hydrogels in drug delivery. Expert Opin Drug Deliv. 2015;12(7):1149–1161. doi:10.1517/17425247.2015.99770725547588
  • Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release. 2014;190:254–273. doi:10.1016/j.jconrel.2014.03.05224746623
  • Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117–118. doi:10.1038/185117a0
  • Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD. Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J. 2018;99:117–133. doi:10.1016/j.eurpolymj.2017.12.004
  • Mathew AP, Uthaman S, Cho K-H, Cho C-S, Park I-K. Injectable hydrogels for delivering biotherapeutic molecules. Int J Biol Macromol. 2018;110:17–29. doi:10.1016/j.ijbiomac.2017.11.11329169942
  • Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, Shakoori Z. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem. 2018;8:42–55. doi:10.1016/j.mtchem.2018.02.004
  • Fu S, Ni P, Wang B, et al. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials. 2012;33(19):4801–4809. doi:10.1016/j.biomaterials.2012.03.04022463934
  • Moreira Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33(5):1281–1290. doi:10.1016/j.biomaterials.2011.10.06722118821
  • Wei X, Gong C, Gou M, et al. Biodegradable poly(ɛ-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm. 2009;381(1):1–18. doi:10.1016/j.ijpharm.2009.07.03319664700
  • Overstreet DJ, Dutta D, Stabenfeldt SE, Vernon BL. Injectable hydrogels. J Polym Sci Part B Polym Phys. 2012;50(13):881–903. doi:10.1002/polb.23081
  • Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016;21(11):1835–1849. doi:10.1016/j.drudis.2016.07.00627423369
  • Koukourakis GV, Kouloulias V, Koukourakis MJ, Zacharias GA, Zabatis H, Kouvaris J. Efficacy of the oral fluorouracil pro-drug capecitabine in cancer treatment: a review. Molecules. 2008;13(8):1897–1922. doi:10.3390/molecules1308189718794792
  • Nichifor M, Schacht EH, Seymour LW. Polymeric prodrugs of 5-fluorouracil. J Control Release. 1997;48(2–3):165–178. doi:10.1016/S0168-3659(97)00048-5
  • Sgambato A, Cipolla L, Russo L. Bioresponsive hydrogels: chemical strategies and perspectives in tissue engineering. Gels. 2016;2(4):28. doi:10.3390/gels2040028
  • Peppas N. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46. doi:10.1016/S0939-6411(00)00090-410840191
  • Bale S, Banks V, Haglestein S, Harding KG. A comparison of two amorphous hydrogels in the debridement of pressure sores. J Wound Care. 1998;7(2):65–68. doi:10.12968/jowc.1998.7.2.659543975
  • Kurt B, Gulyuz U, Demir DD, Okay O. High-strength semi-crystalline hydrogels with self-healing and shape memory functions. Eur Polym J. 2016;81:12–23. doi:10.1016/j.eurpolymj.2016.05.019
  • Li X, Wu W, Liu W. Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carbohydr Polym. 2008;71(3):394–402. doi:10.1016/j.carbpol.2007.06.005
  • Zhang X-Z, Jo Lewis P, Chu -C-C. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials. 2005;26(16):3299–3309. doi:10.1016/j.biomaterials.2004.08.02415603825
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl. 2009;48(30):5418–5429. doi:10.1002/anie.20090044119562807
  • Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–827. doi:10.1038/nrd433325287120
  • Zha L, Banik B, Alexis F. Stimulus responsive nanogels for drug delivery. Soft Matter. 2011;7(13):5908. doi:10.1039/c0sm01307b
  • Gong C, Shi S, Wu L, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: sol–gel–sol transition and drug delivery behavior. Acta Biomater. 2009;5(9):3358–3370. doi:10.1016/j.actbio.2009.05.02519470411
  • Sarvestani AS, Xu W, He X, Jabbari E. Gelation and degradation characteristics of in situ photo-crosslinked poly(l-lactide-co-ethylene oxide-co-fumarate) hydrogels. Polymer. 2007;48(24):7113–7120. doi:10.1016/j.polymer.2007.10.007
  • Puranik AS, Pao LP, White VM, Peppas NA. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics. Eur J Pharm Biopharm. 2016;108:196–213. doi:10.1016/j.ejpb.2016.09.00727634646
  • Jin R, Moreira Teixeira LS, Krouwels A, et al. Synthesis and characterization of hyaluronic acid–poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater. 2010;6(6):1968–1977. doi:10.1016/j.actbio.2009.12.02420025999
  • Magnin D. Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr Polym. 2004;55(4):437–453. doi:10.1016/j.carbpol.2003.11.013
  • Choh S-Y, Cross D, Wang C. Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation. Biomacromolecules. 2011;12(4):1126–1136. doi:10.1021/bm101451k21384907
  • Nam HG, Nam MG, Yoo PJ, Kim J-H. Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N -vinylpyrrolidone) and tannic acid. Soft Matter. 2019;15(4):785–791. doi:10.1039/C8SM02144A30638244
  • Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005;26(18):3941–3951. doi:10.1016/j.biomaterials.2004.10.00515626441
  • Liu T, Ren X, Zhang J, et al. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors. J Power Sources. 2020;449:227532. doi:10.1016/j.jpowsour.2019.227532
  • Piluso S, Hiebl B, Gorb SN, Kovalev A, Lendlein A, Neffe AT. Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties. Int J Artif Organs. 2011;34(2):192–197. doi:10.5301/IJAO.2011.639421374560
  • Giannouli P, Morris ER. Cryogelation of xanthan. Food Hydrocoll. 2003;17(4):495–501. doi:10.1016/S0268-005X(03)00019-5
  • Madl CM, Heilshorn SC. Rapid diels–alder cross-linking of cell encapsulating hydrogels. Chem Mater. 2019;31(19):8035–8043. doi:10.1021/acs.chemmater.9b0248532410775
  • Dong Y, Saeed AO, Hassan W, et al. “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun. 2012;33(2):120–126. doi:10.1002/marc.20110053422139810
  • Lehn J-M. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry In: Barboiu M, editor. Constitutional Dynamic Chemistry. Vol. 322 Berlin, Heidelberg: Springer Berlin Heidelberg; 2011: 1–32. doi:10.1007/128_2011_256.
  • Davis AV, Yeh RM, Raymond KN. Supramolecular assembly dynamics. Proc Natl Acad Sci. 2002;99(8):4793–4796. doi:10.1073/pnas.05201829911880606
  • Piotrowska U, Sobczak M. Enzymatic polymerization of cyclic monomers in ionic liquids as a prospective synthesis method for polyesters used in drug delivery systems. Molecules. 2014;20(1):1–23. doi:10.3390/molecules2001000125546617
  • Matanović MR, Kristl J, Grabnar PA. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm. 2014;472(1–2):262–275. doi:10.1016/j.ijpharm.2014.06.02924950367
  • Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17(2):163–249. doi:10.1016/0079-6700(92)90023-R
  • Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–426. doi:10.1016/j.ejpb.2004.03.01915296964
  • Prabaharan M, Mano JF. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci. 2006;6(12):991–1008. doi:10.1002/mabi.20060016417128423
  • de la Rosa VR, Hoogenboom R. Solution polymeric optical temperature sensors with long-term memory function powered by supramolecular chemistry. Chem Eur J. 2015;21(3):1302–1311. doi:10.1002/chem.20140516125412901
  • Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution: unexpected properties from known building blocks. ACS Macro Lett. 2013;2(7):597–600. doi:10.1021/mz400227y
  • Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun. 2012;33(22):1898–1920. doi:10.1002/marc.20120043322961764
  • Boffito M, Sirianni P, Di Rienzo AM, Chiono V. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives: thermosensitive PEG/PCL block copolymer hydrogels. J Biomed Mater Res A. 2015;103(3):1276–1290. doi:10.1002/jbm.a.3525324912941
  • Klouda L. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2015;97:338–349. doi:10.1016/j.ejpb.2015.05.01726614556
  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34–45. doi:10.1016/j.ejpb.2007.02.02517881200
  • Pei Y, Chen J, Yang L, et al. The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J Biomater Sci Polym Ed. 2004;15(5):585–594. doi:10.1163/15685620432304685215264660
  • Qiu Y, Hamilton SK, Temenoff J. Improving mechanical properties of injectable polymers and composites In: Injectable Biomaterials. Elsevier; 2011:61–91. doi:10.1533/9780857091376.1.61
  • Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG−PLGA−PEG triblock copolymer aqueous solutions. Macromolecules. 1999;32(21):7064–7069. doi:10.1021/ma9908999
  • Lee BH, Lee YM, Sohn YS, Song S-C. A thermosensitive poly(organophosphazene) gel. Macromolecules. 2002;35(10):3876–3879. doi:10.1021/ma012093q
  • Chatterjee S, Hui P, Kan C. Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in textile based transdermal therapy. Polymers. 2018;10(5):480. doi:10.3390/polym10050480
  • Chen X, Huang L, Sun H-J, Cheng SZD, Zhu M, Yang G. Stimuli-responsive nanocomposite: potential injectable embolization agent. Macromol Rapid Commun. 2014;35(5):579–584. doi:10.1002/marc.20130072024375679
  • Qiao P, Niu Q, Wang Z, Cao D. Synthesis of thermosensitive micelles based on poly(N-isopropylacrylamide) and poly(l-alanine) for controlled release of adriamycin. Chem Eng J. 2010;159(1–3):257–263. doi:10.1016/j.cej.2010.02.035
  • Ghamkhari A, Sarvari R, Ghorbani M, Hamishehkar H. Novel thermoresponsive star-liked nanomicelles for targeting of anticancer agent. Eur Polym J. 2018;107:143–154. doi:10.1016/j.eurpolymj.2018.08.008
  • Alexandridis P, Alan Hatton T. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf Physicochem Eng Asp. 1995;96(1–2):1–46. doi:10.1016/0927-7757(94)03028-X
  • Shaker DS, Shaker MA, Klingner A, Hanafy MS. In situ thermosensitive Tamoxifen citrate loaded hydrogels: an effective tool in breast cancer loco-regional therapy. J Drug Deliv Sci Technol. 2016;35:155–164. doi:10.1016/j.jddst.2016.05.007
  • Hood E, Gonzalez M, Plaas A, Strom J, VanAuker M. Immuno-targeting of nonionic surfactant vesicles to inflammation. Int J Pharm. 2007;339(1–2):222–230. doi:10.1016/j.ijpharm.2006.12.04817448616
  • Zhu J-L, Yu SW-K, Chow PK-H, Tong YW, Li J. Controlling injectability and in vivo stability of thermogelling copolymers for delivery of yttrium-90 through intra-tumoral injection for potential brachytherapy. Biomaterials. 2018;180:163–172. doi:10.1016/j.biomaterials.2018.07.02330053657
  • Goh AS-W, Chung AY-F, Lo RH-G, et al. A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study. Int J Radiat Oncol. 2007;67(3):786–792. doi:10.1016/j.ijrobp.2006.09.011
  • Zhang K, Loong SLE, Connor S, et al. Complete tumor response following intratumoral 32P biosilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin Cancer Res. 2005;11(20):7532–7537. doi:10.1158/1078-0432.CCR-05-040016243828
  • Bae SJ, Suh JM, Sohn YS, Bae YH, Kim SW, Jeong B. Thermogelling poly(caprolactone- b -ethylene glycol- b -caprolactone) aqueous solutions. Macromolecules. 2005;38(12):5260–5265. doi:10.1021/ma050489m
  • Zhao S-P, Zhang L-M, Ma D, Yang C, Yan L. Fabrication of novel supramolecular hydrogels with high mechanical strength and adjustable thermosensitivity. J Phys Chem B. 2006;110(33):16503–16507. doi:10.1021/jp063005c16913783
  • Gong C, Qian Z, Liu C, et al. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)–polycaprolactone–poly(ethylene glycol) block copolymers. Smart Mater Struct. 2007;16(3):927–933. doi:10.1088/0964-1726/16/3/043
  • Liu C, Gong C, Pan Y, et al. Synthesis and characterization of a thermosensitive hydrogel based on biodegradable amphiphilic PCL-Pluronic (L35)-PCL block copolymers. Colloids Surf Physicochem Eng Asp. 2007;302(1–3):430–438. doi:10.1016/j.colsurfa.2007.03.006
  • Dayananda K, He C, Lee DS. In situ gelling aqueous solutions of pH- and temperature-sensitive poly(ester amino urethane)s. Polymer. 2008;49(21):4620–4625. doi:10.1016/j.polymer.2008.08.010
  • Huynh DP, Nguyen MK, Pi BS, et al. Functionalized injectable hydrogels for controlled insulin delivery. Biomaterials. 2008;29(16):2527–2534. doi:10.1016/j.biomaterials.2008.02.01618329707
  • Liu CB, Gong CY, Huang MJ, et al. Thermoreversible gel–sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res B Appl Biomater. 2008;84B(1):165–175. doi:10.1002/jbm.b.30858
  • Gong C, Shi S, Dong P, et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm. 2009;365(1–2):89–99. doi:10.1016/j.ijpharm.2008.08.02718793709
  • Gong CY, Dong PW, Shi S, et al. Thermosensitive PEG–PCL–PEG hydrogel controlled drug delivery system: sol–gel–sol transition and in vitro drug release study. J Pharm Sci. 2009;98(10):3707–3717. doi:10.1002/jps.2169419189419
  • Gong CY, Shi S, Dong PW, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel: part 1—synthesis, characterization, and acute toxicity evaluation. J Pharm Sci. 2009;98(12):4684–4694. doi:10.1002/jps.2178019367619
  • Huynh DP, Nguyen MK, Kim BS, Lee DS. Molecular design of novel pH/temperature-sensitive hydrogels. Polymer. 2009;50(12):2565–2571. doi:10.1016/j.polymer.2009.03.060
  • Ma D, Zhang L-M, Xie X, Liu T, Xie M-Q. Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme. J Colloid Interface Sci. 2011;359(2):399–406. doi:10.1016/j.jcis.2011.04.03221536304
  • Wang W, Chang L, Li X, et al. Controlled thermal gelation of poly(3-caprolactone)/poly(ethylene glycol) block copolymers by modifying cyclic ether pendant groups on poly(3- caprolactone). Soft matter. 2012;8:1575–1583.
  • Wang W, Deng L, Liu S, et al. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer. Acta Biomater. 2012;8(11):3963–3973. doi:10.1016/j.actbio.2012.07.02122835677
  • Hyun H, Park S, Kwon D, Khang G, Lee H, Kim M. Thermo-responsive injectable MPEG-polyester diblock copolymers for sustained drug release. Polymers. 2014;6(10):2670–2683. doi:10.3390/polym6102670
  • Lv F, Mao L, Liu T. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG–PCL copolymer: preparation, characterization and fluorescence imaging in vivo. Mater Sci Eng C. 2014;43:221–230. doi:10.1016/j.msec.2014.07.019
  • Buwalda SJ, Nottelet B, Coudane J. Robust & thermosensitive poly(ethylene glycol)-poly(ε-caprolactone) star block copolymer hydrogels. Polym Degrad Stab. 2017;137:173–183. doi:10.1016/j.polymdegradstab.2017.01.015
  • Jiang Z, Deng X, Hao J. Thermogelling hydrogels of poly(ɛ-caprolactone-co-D,L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-D,L-lactide) and poly(ɛ-caprolactone-co-L-lactide)–poly(ethylene glycol)–poly(ɛ-caprolactone-co-L-lactide) aqueous solutions. J Polym Sci Part Polym Chem. 2007;45(17):4091–4099. doi:10.1002/pola.22222
  • Kang YM, Lee SH, Lee JY, et al. A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window. Biomaterials. 2010;31(9):2453–2460. doi:10.1016/j.biomaterials.2009.11.11520022371
  • Sandker MJ, Petit A, Redout EM, et al. In situ forming acyl-capped PCLA–PEG–PCLA triblock copolymer based hydrogels. Biomaterials. 2013;34(32):8002–8011. doi:10.1016/j.biomaterials.2013.07.04623891396
  • Petit A, Redout EM, van de Lest CH, et al. Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials. 2015;53:426–436. doi:10.1016/j.biomaterials.2015.02.10925890740
  • Velthoen IW, van Beek J, Dijkstra PJ, Feijen J. Thermo-responsive hydrogels based on highly branched poly(ethylene glycol)–poly(l-lactide) copolymers. React Funct Polym. 2011;71(3):245–253. doi:10.1016/j.reactfunctpolym.2010.08.007
  • Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials. 2011;32(21):4725–4736. doi:10.1016/j.biomaterials.2011.03.04621482434
  • Abebe DG, Fujiwara T. Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of pre-mixed copolymers with different PEG lengths. Biomacromolecules. 2012;13(6):1828–1836. doi:10.1021/bm300325v22537225
  • Buwalda SJ, Calucci L, Forte C, Dijkstra PJ, Feijen J. Stereocomplexed 8-armed poly(ethylene glycol)–poly(lactide) star block copolymer hydrogels: gelation mechanism, mechanical properties and degradation behavior. Polymer. 2012;53(14):2809–2817. doi:10.1016/j.polymer.2012.05.006
  • Mao H, Pan P, Shan G, Bao Y. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers. J Phys Chem B. 2015;119(21):6471–6480. doi:10.1021/acs.jpcb.5b0361025932653
  • Mao H, Shan G, Bao Y, Wu ZL, Pan P. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence. Soft Matter. 2016;12(20):4628–4637. doi:10.1039/C6SM00517A27121732
  • Jeong B, Lee DS, Shon J-I, Bae YH, Kim SW. Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. J Polym Sci Part Polym Chem. 1999;37(6):751–760. doi:10.1002/(SICI)1099-0518(19990315)37:6<751::AID-POLA10>3.0.CO;2-0
  • Lee DS, Shim MS, Kim SW, Lee H, Park I, Chang T. Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol Rapid Commun. 2001;22(8):587–592. doi:10.1002/1521-3927(20010501)22:8<587::AID-MARC587>3.0.CO;2-8
  • Chung Y-M, Simmons KL, Gutowska A, Jeong B. Sol−gel transition temperature of PLGA- g -PEG aqueous solutions. Biomacromolecules. 2002;3(3):511–516. doi:10.1021/bm015643112005522
  • Jackson JK, Hung T, Letchford K, Burt HM. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Int J Pharm. 2007;342(1–2):6–17. doi:10.1016/j.ijpharm.2007.04.02217555895
  • Fraylich MR, Liu R, Richardson SM, et al. Thermally-triggered gelation of PLGA dispersions: towards an injectable colloidal cell delivery system. J Colloid Interface Sci. 2010;344(1):61–69. doi:10.1016/j.jcis.2009.12.03020070971
  • Gao Y, Sun Y, Ren F, Gao S. PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm. 2010;36(10):1131–1138. doi:10.3109/0363904100368082620334543
  • Lin G, Cosimbescu L, Karin NJ, Tarasevich BJ. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed Mater. 2012;7(2):024107. doi:10.1088/1748-6041/7/2/02410722456931
  • Xie B, Jin L, Luo Z, et al. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. Int J Pharm. 2015;490(1–2):375–383. doi:10.1016/j.ijpharm.2015.05.07126027491
  • Dai X-H, Jin H, Cai M-H, et al. Fabrication of thermosensitive, star-shaped poly(L-lactide)-block-poly(N-isopropylacrylamide) copolymers with porphyrin core for photodynamic therapy. React Funct Polym. 2015;89:9–17. doi:10.1016/j.reactfunctpolym.2015.02.002
  • Zhang J, Cui Z, Field R, Moloney MG, Rimmer S, Ye H. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide). Eur Polym J. 2015;67:346–364. doi:10.1016/j.eurpolymj.2015.04.013
  • Lee A-W, Hsu -C-C, Liu Y-Z, Wei P-L, Chen J-K. Supermolecules of poly(N -isopropylacrylamide) complexating Herring sperm DNA with bio-multiple hydrogen bonding. Colloids Surf B Biointerfaces. 2016;148:422–430. doi:10.1016/j.colsurfb.2016.09.01527639492
  • Peng M, Xu S, Zhang Y, et al. Thermosensitive injectable hydrogel enhances the antitumor effect of embelin in mouse hepatocellular carcinoma. J Pharm Sci. 2014;103(3):965–973. doi:10.1002/jps.2388524481745
  • Huang Y, Lu J, Gao X, et al. PEG-derivatized embelin as a dual functional carrier for the delivery of paclitaxel. Bioconjug Chem. 2012;23(7):1443–1451. doi:10.1021/bc300046822681537
  • Wu J, Qu Y, Shi K, et al. Camptothecin HMSNs/thermosensitive hydrogel composite for applications in preventing local breast cancer recurrence. Chin Chem Lett. 2018;29(12):1819–1823. doi:10.1016/j.cclet.2018.10.004
  • Khan RU, Wang L, Yu H, et al. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery. Russ Chem Rev. 2018;87(2):109–150. doi:10.1070/RCR4757
  • Sohn YS, Kim JK, Song R, Jeong B. The relationship of thermosensitive properties with structure of organophosphazenes. Polymer. 2004;45(9):3081–3084. doi:10.1016/j.polymer.2004.02.062
  • Kang G, Cheon S, Song S. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int J Pharm. 2006;319(1–2):29–36. doi:10.1016/j.ijpharm.2006.03.03216677786
  • Kang GD, Cheon SH, Khang G, Song S-C. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Eur J Pharm Biopharm. 2006;63(3):340–346. doi:10.1016/j.ejpb.2006.01.00116527468
  • Lippert C, Seeger H, Mueck AO, Lippert TH. The effects of A-ring and D-ring metabolites of estradiol on the proliferation of vascular endothelial cells. Life Sci. 2000;67(13):1653–1658. doi:10.1016/S0024-3205(00)00747-510983858
  • Cho J-K, Hong K-Y, Park JW, Yang H-K, Song S-C. Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J Drug Target. 2011;19(4):270–280. doi:10.3109/1061186X.2010.49946120608785
  • Tevaarwerk AJ, Holen KD, Alberti DB, et al. Phase I trial of 2-methoxyestradiol nanocrystal dispersion in advanced solid malignancies. Clin Cancer Res. 2009;15(4):1460–1465. doi:10.1158/1078-0432.CCR-08-159919228747
  • Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release. 2017;253:46–63. doi:10.1016/j.jconrel.2017.02.02128242418
  • Gil E, Hudson S. Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci. 2004;29(12):1173–1222. doi:10.1016/j.progpolymsci.2004.08.003
  • Zhu L, Smith PP, Boyes SG. pH-responsive polymers for imaging acidic biological environments in tumors. J Polym Sci Part B Polym Phys. 2013;51(14):1062–1067. doi:10.1002/polb.23302
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49–60. doi:10.1016/j.addr.2012.09.024
  • Park SY, Bae YH. Novel pH-sensitive polymers containing sulfonamide groups. Macromol Rapid Commun. 1999;20(5):269–273. doi:10.1002/(SICI)1521-3927(19990501)20:5<269::AID-MARC269>3.0.CO;2-3
  • Kurkuri MD, Aminabhavi TM. Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J Control Release. 2004;96(1):9–20. doi:10.1016/j.jconrel.2003.12.02515063025
  • Kharlampieva E, Sukhishvili SA. Polyelectrolyte multilayers of weak polyacid and cationic copolymer: competition of hydrogen-bonding and electrostatic interactions. Macromolecules. 2003;36(26):9950–9956. doi:10.1021/ma0350821
  • Grainger SJ, El-Sayed MEH. Stimuli-sensitive particles for drug delivery In: Biologically-Responsive Hybrid Biomaterials. World Scientific; 2010:171–190. doi:10.1142/9789814295680_0008
  • Hoffman AS, Stayton PS, Press O, et al. Bioinspired polymers that control intracellular drug delivery. Biotechnol Bioprocess Eng. 2001;6(4):205–212. doi:10.1007/BF02931981
  • Huh KM, Kang HC, Lee YJ, Bae YH. pH-sensitive polymers for drug delivery. Macromol Res. 2012;20(3):224–233. doi:10.1007/s13233-012-0059-5
  • Kang SI, Bae YH. pH-induced solubility transition of sulfonamide-based polymers. J Control Release. 2002;80(1–3):145–155. doi:10.1016/S0168-3659(02)00021-411943394
  • Kang SI, Na K, Bae YH. Sulfonamide-containing polymers: a new class of pH-sensitive polymers and gels. Macromol Symp. 2001;172(1):149–156. doi:10.1002/1521-3900(200107)172:1<149::AID-MASY149>3.0.CO;2-G
  • Kang SI, Bae YH. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J Control Release. 2003;86(1):115–121. doi:10.1016/S0168-3659(02)00409-112490377
  • Schmalz A, Hanisch M, Schmalz H, Müller AHE. Double stimuli-responsive behavior of linear and star-shaped poly(N,N-diethylaminoethyl methacrylate) in aqueous solution. Polymer. 2010;51(6):1213–1217. doi:10.1016/j.polymer.2009.11.023
  • Pelton R. Polyvinylamine: a tool for engineering interfaces. Langmuir. 2014;30(51):15373–15382. doi:10.1021/la501721424963533
  • Tsitsilianis C, Stavrouli N, Bocharova V, et al. Stimuli responsive associative polyampholytes based on ABCBA pentablock terpolymer architecture. Polymer. 2008;49(13–14):2996–3006. doi:10.1016/j.polymer.2008.04.058
  • Arizaga A, Ibarz G, Piñol R. Stimuli-responsive poly(4-vinyl pyridine) hydrogel nanoparticles: synthesis by nanoprecipitation and swelling behavior. J Colloid Interface Sci. 2010;348(2):668–672. doi:10.1016/j.jcis.2010.05.05120621828
  • Molina MJ, Gómez-Antón MR, Piérola IF. Determination of the parameters controlling swelling of chemically cross-linked pH-sensitive Poly(N -vinylimidazole) hydrogels. J Phys Chem B. 2007;111(42):12066–12074. doi:10.1021/jp074385k17915914
  • Ihm J, Han K, Hwang C, et al. Poly (4-vinylimidazole) as nonviral gene carrier: in vitro and in vivo transfection. Acta Biomater. 2005;1(2):165–172. doi:10.1016/j.actbio.2004.12.00216701793
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58(15):1655–1670. doi:10.1016/j.addr.2006.09.02017125884
  • Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014;11(6):901–915. doi:10.1517/17425247.2014.90204724848309
  • Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–234. doi:10.1038/nrd198416518375
  • Puranik AS, Pao LP, White VM, Peppas NA. In vitro evaluation of pH-responsive nanoscale hydrogels for the oral delivery of hydrophobic therapeutics. Ind Eng Chem Res. 2016;55(40):10576–10590. doi:10.1021/acs.iecr.6b02565
  • Shen Q, Lin Y, Handa T, et al. Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies. Int J Pharm. 2006;313(1–2):49–56. doi:10.1016/j.ijpharm.2006.01.02016500056
  • Plapied L, Duhem N, Des Rieux A, Préat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci. 2011;16(3):228–237. doi:10.1016/j.cocis.2010.12.005
  • Wang Y, Chen L, Tan L, et al. PEG–PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials. 2014;35(25):6972–6985. doi:10.1016/j.biomaterials.2014.04.09924836952
  • Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204. doi:10.1016/j.jconrel.2007.12.01718261822
  • Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984;2(4):343–366. doi:10.1016/S0167-8140(84)80077-86097949
  • Lym JS, Nguyen QV, Ahn DW, et al. Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy. Acta Biomater. 2016;41:253–263. doi:10.1016/j.actbio.2016.05.01827184404
  • Nguyen QV, Lym JS, Huynh CT, et al. A novel sulfamethazine-based pH-sensitive copolymer for injectable radiopaque embolic hydrogels with potential application in hepatocellular carcinoma therapy. Polym Chem. 2016;7(37):5805–5818. doi:10.1039/C6PY01141A
  • Suzuki A. Light induced phase transition of poly(N-isopropylacrylamide-co-chlorophyllin) gels. J Intell Mater Syst Struct. 1994;5(1):112–116. doi:10.1177/1045389X9400500113
  • Jha S, Sharma PK, Malviya R. Hyperthermia: role and risk factor for cancer treatment. Achiev Life Sci. 2016;10(2):161–167. doi:10.1016/j.als.2016.11.004
  • van der Zee J, González D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet. 2000;355(9210):1119–1125. doi:10.1016/S0140-6736(00)02059-610791373
  • Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol. 2018. doi:10.1016/j.jmrt.2018.03.007
  • Chauhan DS, Indulekha S, Gottipalli R, et al. NIR light-triggered shrinkable thermoresponsive PNVCL nanoshells for cancer theranostics. RSC Adv. 2017;7(70):44026–44034. doi:10.1039/C7RA07485A
  • Hu J, Chen Y, Li Y, Zhou Z, Cheng Y. A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials. 2017;112:133–140. doi:10.1016/j.biomaterials.2016.10.01527760397
  • Lugao AB, Malmonge SM. Use of radiation in the production of hydrogels. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2001;185(1–4):37–42. doi:10.1016/S0168-583X(01)00807-2
  • Coons LS, Rangarajan B, Godshall D, Scranton AB. Photopolymerizations of Vinyl Ester: glass fiber composites In: Scranton AB, Bowman CN, Peiffer RW, editors. Photopolymerization. Vol. 673 Washington, DC: American Chemical Society; 1997: 203–218. doi:10.1021/bk-1997-0673.ch015.
  • Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23(22):4307–4314. doi:10.1016/S0142-9612(02)00175-812219820
  • Kawano T, Niidome Y, Mori T, Katayama Y, Niidome T. PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. Bioconjug Chem. 2009;20(2):209–212. doi:10.1021/bc800480k19133725
  • Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev. 2011;63(14–15):1257–1266. doi:10.1016/j.addr.2011.06.00921745509
  • Pinto MN, Chakraborty I, Sandoval C, Mascharak PK. Eradication of HT-29 colorectal adenocarcinoma cells by controlled photorelease of CO from a CO-releasing polymer (photoCORP-1) triggered by visible light through an optical fiber-based device. J Control Release. 2017;264:192–202. doi:10.1016/j.jconrel.2017.08.03928866022
  • Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9(9):728–743. doi:10.1038/nrd322820811383
  • Chakraborty I, Carrington SJ, Roseman G, Mascharak PK. Synthesis, structures, and CO release capacity of a family of water-soluble PhotoCORMs: assessment of the biocompatibility and their phototoxicity toward human breast cancer cells. Inorg Chem. 2017;56(3):1534–1545. doi:10.1021/acs.inorgchem.6b0262328079376
  • Carrington SJ, Chakraborty I, Mascharak PK. Rapid CO release from a Mn(i) carbonyl complex derived from azopyridine upon exposure to visible light and its phototoxicity toward malignant cells. Chem Commun. 2013;49(96):11254. doi:10.1039/c3cc46558f
  • Wegiel B, Gallo D, Csizmadia E, et al. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res. 2013;73(23):7009–7021. doi:10.1158/0008-5472.CAN-13-107524121491
  • Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–496. doi:10.3109/1071576100366755420370557
  • Li X, Fang P, Mai J, Choi ET, Wang H, Yang X. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6(1):19. doi:10.1186/1756-8722-6-1923442817
  • Piantadosi CA. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med. 2008;45(5):562–569. doi:10.1016/j.freeradbiomed.2008.05.01318549826
  • Chin BY, Jiang G, Wegiel B, et al. Hypoxia-inducible factor 1 stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci. 2007;104(12):5109–5114. doi:10.1073/pnas.060961110417360382
  • García-Gallego S, Bernardes GJL. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew Chem Int Ed. 2014;53(37):9712–9721. doi:10.1002/anie.201311225
  • Heinemann SH, Hoshi T, Westerhausen M, Schiller A. Carbon monoxide – physiology, detection and controlled release. Chem Commun. 2014;50(28):3644–3660. doi:10.1039/C3CC49196J
  • Rimmer RD, Pierri AE, Ford PC. Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light. Coord Chem Rev. 2012;256(15–16):1509–1519. doi:10.1016/j.ccr.2011.12.009
  • Schatzschneider U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs): CO-releasing molecules (CORMs). Br J Pharmacol. 2015;172(6):1638–1650. doi:10.1111/bph.1268824628281
  • Schatzschneider U. PhotoCORMs: light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorganica Chim Acta. 2011;374(1):19–23. doi:10.1016/j.ica.2011.02.068
  • Govender P, Pai S, Schatzschneider U, Smith GS. Next generation PhotoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg Chem. 2013;52(9):5470–5478. doi:10.1021/ic400377k23594198
  • Jalani G, Naccache R, Rosenzweig DH, Haglund L, Vetrone F, Cerruti M. Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J Am Chem Soc. 2016;138(3):1078–1083. doi:10.1021/jacs.5b1235726708288
  • Wang X, Wang C, Zhang Q, Cheng Y. Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery. Chem Commun. 2015;5. doi:10.1039/C5CC08391E
  • Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev. 2005;105(6):2647–2694. doi:10.1021/cr030707e15941225
  • Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed. 2011;50(26):5808–5829. doi:10.1002/anie.201005159
  • Yan B, Boyer J-C, Habault D, Branda NR, Zhao Y. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc. 2012;134(40):16558–16561. doi:10.1021/ja308876j23013429
  • Ansari MO, Ahmad MF, Shadab GGHA, Siddique HR. Superparamagnetic iron oxide nanoparticles based cancer theranostics: a double edge sword to fight against cancer. J Drug Deliv Sci Technol. 2018;45:177–183. doi:10.1016/j.jddst.2018.03.017
  • Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles – in vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci. 2017;249:192–212. doi:10.1016/j.cis.2017.05.00328499604
  • García-Jimeno S, Ortega-Palacios R, Cepeda-Rubio M, Vera A, Leija L, Estelrich J. Improved thermal ablation efficacy using magnetic nanoparticles: a study in tumor phantoms. Prog Electromagn Res. 2012;128:229–248. doi:10.2528/PIER12020108
  • Jordan A, Scholz R, Wust P, Fa H. Magnetic #uid hyperthermia (MFH): cancer treatment with AC magnetic “eld induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;7.
  • Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Invest Radiol. 2002;37(10):580–586. doi:10.1097/00004424-200210000-0000812352168
  • Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia. 2002;18(4):267–284. doi:10.1080/0265673011010878512079583
  • Meenach SA, Hilt JZ, Anderson KW. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater. 2010;6(3):1039–1046. doi:10.1016/j.actbio.2009.10.01719840875
  • Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. 2015;93:1–49. doi:10.1016/j.mser.2015.04.00127134415
  • Kawamura A, Miyata T. Biologically stimuli-responsive hydrogels In: Li Q, editor. Intelligent Stimuli-Responsive Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013:335–362. doi:10.1002/9781118680469.ch10
  • Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarker s and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287–5297. doi:10.1200/JCO.2009.23.555619738110
  • Chandrawati R. Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med. 2016;241(9):972–979. doi:10.1177/1535370216647186
  • Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 2004;10(3–4):515–522. doi:10.1089/10763270432306187015165468
  • Vartak DG, Gemeinhart RA. Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target. 2007;15(1):1–20. doi:10.1080/1061186060096896717365270
  • Nultsch K, Germershaus O. Matrix metalloprotease triggered bioresponsive drug delivery systems – design, synthesis and application. Eur J Pharm Biopharm. 2018;131:189–202. doi:10.1016/j.ejpb.2018.08.01030145219
  • Daniele A, Abbate I, Oakley C, et al. Clinical and prognostic role of matrix metalloproteinase-2, −9 and their inhibitors in breast cancer and liver diseases: a review. Int J Biochem Cell Biol. 2016;77:91–101. doi:10.1016/j.biocel.2016.06.00227267661
  • Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19(5):329–337. doi:10.1016/j.semcancer.2009.05.00319482086
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–174. doi:10.1038/nrc74511990853
  • Nazli C, Demirer GS, Yar Y, Acar HY, Kizilel S. Targeted delivery of doxorubicin into tumor cells via MMP-sensitive PEG hydrogel-coated magnetic iron oxide nanoparticles (MIONPs). Colloids Surf B Biointerfaces. 2014;122:674–683. doi:10.1016/j.colsurfb.2014.07.04925183059
  • Zhang X, Xu B, Puperi DS, et al. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater. 2015;14:11–21. doi:10.1016/j.actbio.2014.11.04225433168
  • Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature. 1999;399(6738):766–769. doi:10.1038/2161910391240
  • Evans V, Vockler C, Friedlander M, Walsh B, Willcox MD. Lacryglobin in human tears, a potential marker for cancer. Clin Experiment Ophthalmol. 2001;29(3):161–163. doi:10.1046/j.1442-9071.2001.00408.x11446459
  • Tseng R, Chen -C-C, Hsu S-M, Chuang H-S. Contact-lens biosensors. Sensors. 2018;18(8):2651. doi:10.3390/s18082651
  • Oroojalian F, Babaei M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin. J Control Release. 2018;288:45–61. doi:10.1016/j.jconrel.2018.08.03930171978
  • Dadsetan M, Taylor KE, Yong C, Bajzer Ž, Lu L, Yaszemski MJ. Controlled release of doxorubicin from pH-responsive microgels. Acta Biomater. 2013;9(3):5438–5446. doi:10.1016/j.actbio.2012.09.01923022545
  • Dani RK, Schumann C, Taratula O, Taratula O. Temperature-tunable iron oxide nanoparticles for remote-controlled drug release. AAPS PharmSciTech. 2014;15(4):963–972. doi:10.1208/s12249-014-0131-x24821220
  • Garripelli VK, Kim J-K, Son S, Kim WJ, Repka MA, Jo S. Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater. 2011;7(5):1984–1992. doi:10.1016/j.actbio.2011.02.00521300184
  • Lin X, Deng L, Xu Y, Dong A. Thermosensitive in situ hydrogel of paclitaxel conjugated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone). Soft Matter. 2012;8(12):3470. doi:10.1039/c2sm07172j
  • Xu S, Wang W, Li X, Liu J, Dong A, Deng L. Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOX-HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency. Eur J Pharm Sci. 2014;62:267–273. doi:10.1016/j.ejps.2014.06.00224931190
  • Tan EKW, Au YZ, Moghaddam GK, Occhipinti LG, Lowe CR. Towards closed-loop integration of point-of-care technologies. Trends Biotechnol. 2019;37(7):775–788. doi:10.1016/j.tibtech.2018.12.00430683459