430
Views
22
CrossRef citations to date
0
Altmetric
Review

Use of Silver Nanomaterials for Caries Prevention: A Concise Review

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 3181-3191 | Published online: 06 May 2020

References

  • Mazumder JA, Khatoon N, Batra P, Sardar M. Biosynthesized silver nanoparticles for orthodontic applications. Adv Sci Eng Med. 2018;10(12):1169–1173. doi:10.1166/asem.2018.2289
  • Rauscher H, Sokull-Klüttgen B, Stamm H. The European Commission’s recommendation on the definition of nanomaterial makes an impact. Nanotoxicology. 2012;7(7):1195–1197. doi:10.3109/17435390.2012.72472422920756
  • Yin IX, Yu OY, Zhao IS, et al. Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use. Arch Oral Biol. 2019;102:106–112. doi:10.1016/j.archoralbio.2019.03.02230999064
  • Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine. 2017;13(4):1543–1562. doi:10.1016/j.nano.2017.01.01828232213
  • Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799–819. doi:10.1039/C8NR07769J30603750
  • Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20(4):865.
  • Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev. 2014;43(5):1501–1518. doi:10.1039/C3CS60218D24292075
  • Perinot A, Kshirsagar P, Malvindi MA, Pompa PP, Fiammengo R, Caironi M. Direct-written polymer field-effect transistors operating at 20 MHz. Sci Rep. 2016;6(1):38941. doi:10.1038/srep3894127941844
  • Xiao S, Wang H, Liang K, et al. Novel multifunctional nanocomposite for root caries restorations to inhibit periodontitis-related pathogens. J Dent. 2018.
  • Bapat R, Chaubal T, Joshi C, et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mat Sci Eng C. 2018;91:881. doi:10.1016/j.msec.2018.05.069
  • Samberg ME, Orndorff PE, Monteiro-Riviere NA. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology. 2011;5(2):244–253. doi:10.3109/17435390.2010.52566921034371
  • Yang Y, Ren S, Zhang X, et al. Safety and efficacy of PLGA(Ag-Fe 3 O 4)-coated dental implants in inhibiting bacteria adherence and osteogenic inducement under a magnetic field. Int J Nanomed. 2018;13:3751–3762. doi:10.2147/IJN.S159860
  • Metin-Gursoy G, Taner L, Akca G. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release. Eur J Orthod. 2017;39(1):9–16. doi:10.1093/ejo/cjv09726787659
  • Xiao S, Liang K, Weir MD, et al. Combining bioactive multifunctional dental composite with PAMAM for root dentin remineralization. Materials. 2017;10(1):89.
  • Ahmed F, Prashanth ST, Sindhu K, Nayak A, Chaturvedi S. Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: an in vitro study. J Indian Soc Pedod Prev Dent. 2019;37(1):46–54. doi:10.4103/JISPPD.JISPPD_239_1830804307
  • Silva A, JdA T, Melo Júnior P, et al. Remineralizing potential of nano-silver-fluoride for tooth enamel: an optical coherence tomography analysis. Pesquisa Brasileira em Odontopediatria e Clínica Integrada. 2019;19(1):1–13.
  • Tirupathi S, Svsg N, Rajasekhar S, Nuvvula S. Comparative cariostatic efficacy of a novel nano-silver fluoride varnish with 38% silver diamine fluoride varnish a double-blind randomized clinical trial. J Clin Exp Dent. 2019;e105–e112. doi:10.4317/jced.5499530805113
  • Vieira Costa e Silva A, Teixeira JA, Mota CCBO, et al. In vitro morphological, optical and microbiological evaluation of nanosilver fluoride in the remineralization of deciduous teeth enamel. Nanotechnol Rev. 2018;7(6):509–520. doi:10.1515/ntrev-2018-0083
  • Teixeira JA, Silva AVCE, Dos Santos Júnior VE, et al. Effects of a new nano-silver fluoride-containing dentifrice on demineralization of enamel and streptococcus mutans adhesion and acidogenicity. Int J Dent. 2018;2018:1351925. doi:10.1155/2018/135192529853891
  • Nozari A, Ajami S, Rafiei A, Niazi E. Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary teeth enamel remineralization: an in vitro study. J Clin Diagn Res. 2017;11(9):Zc97–Zc100. doi:10.7860/JCDR/2017/30108.10694
  • Dos Santos VE, Vasconcelos Filho A, Targino AGR, et al. A new “silver-bullet” to treat caries in children–nano silver fluoride: a randomised clinical trial. J Dent. 2014;42(8):945–951. doi:10.1016/j.jdent.2014.05.01724930870
  • Targino AGR, Flores MAP, Dos Santos Junior VE, et al. An innovative approach to treating dental decay in children. A new anti-caries agent. J Mater Sci Mater Med. 2014;25(8):2041–2047. doi:10.1007/s10856-014-5221-524818873
  • Wu R, Zhao Q, Lu S, Fu Y, Yu D, Zhao W. Inhibitory effect of reduced graphene oxide-silver nanocomposite on progression of artificial enamel caries. J Appl Oral Sci. 2018;27:e20180042. doi:10.1590/1678-7757-2018-004230540069
  • Zhang K, Li F, Imazato S, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater. 2013;101(6):929–938. doi:10.1002/jbm.b.3289823529901
  • Hernandez-Gomora AE, Lara-Carrillo E, Robles-Navarro JB, et al. Biosynthesis of silver nanoparticles on orthodontic elastomeric modules: evaluation of mechanical and antibacterial properties. Molecules. 2017;22(9):1407. doi:10.3390/molecules22091407
  • Salas-Lopez EK, Pierdant-Perez M, Hernandez-Sierra JF, Ruiz F, Mandeville P, Pozos-Guillen AJ. Effect of silver nanoparticle-added pit and fissure sealant in the prevention of dental caries in children. J Clin Pediatr Dent. 2017;41(1):48–52. doi:10.17796/1053-4628-41.1.4828052214
  • El-Wassefy NA, El-Mahdy RH, El-Kholany NR. The impact of silver nanoparticles integration on biofilm formation and mechanical properties of glass ionomer cement. J Esthet Restor Dent. 2018;30(2):146–152. doi:10.1111/jerd.1235329197139
  • Ghorbanzadeh R, Pourakbari B, Bahador A. Effects of baseplates of orthodontic appliances with in situ generated silver nanoparticles on cariogenic bacteria: a randomized, double-blind cross-over clinical trial. J Contemp Dent Pract. 2015;16(4):291. doi:10.5005/jp-journals-10024-167826067732
  • Farhadian N, Usefi Mashoof R, Khanizadeh S, Ghaderi E, Farhadian M, Miresmaeili A. Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: a randomized clinical trial. Am J Orthod Dentofacial Orthop. 2016;149(2):155–160. doi:10.1016/j.ajodo.2015.07.03126827971
  • Li F, Fang M, Peng Y, Zhang J. Antibacterial properties of nano silver-containing orthodontic cements in the rat caries disease model. J. Wuhan Univ Technol Mater Sci Ed. 2015;30(6):1291–1296. doi:10.1007/s11595-015-1310-7
  • Espinosa-Cristóbal LF, Martínez-Castañón GA, Martínez-Martínez RE, et al. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Mater Lett. 2009;63(29):2603–2606. doi:10.1016/j.matlet.2009.09.018
  • Dos Santos Junior VE, Targino AGR, Flores MAP, et al. Antimicrobial activity of silver nanoparticle colloids of different sizes and shapes against Streptococcus mutans. Res Chem Intermed. 2017;43(10):5889–5899. doi:10.1007/s11164-017-2969-5
  • Fernandes GL, Delbem ACB, Do Amaral JG, et al. Nanosynthesis of silver-calcium glycerophosphate: promising association against oral pathogens. Antibiotics. 2018;7(3). doi:10.3390/antibiotics7030077
  • Schwass DR, Lyons KM, Love R, Tompkins GR, Meledandri CJ. Antimicrobial activity of a colloidal AgNP suspension demonstrated in vitro against monoculture biofilms: toward a novel tooth disinfectant for treating dental caries. Adv Dent Res. 2018;29(1):117–123. doi:10.1177/002203451773649529355416
  • Zhang N, Weir MD, Chen C, Melo MAS, Bai Y, Xu HHK. Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions. J Dent. 2016;50:51–59. doi:10.1016/j.jdent.2016.05.00127157089
  • Freire PL, Stamford TC, Albuquerque AJ, et al. Action of silver nanoparticles towards biological systems: cytotoxicity evaluation using hen’s egg test and inhibition of Streptococcus mutans biofilm formation. Int J Antimicrob Agents. 2015;45(2):183–187. doi:10.1016/j.ijantimicag.2014.09.00725455849
  • Li F, Weir MD, Chen J, Xu HHK. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent Mater. 2013;29(4):450–461. doi:10.1016/j.dental.2013.01.01223428077
  • Espinosa-Cristóbal LF, López-Ruiz N, Cabada-Tarín D, et al. Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. J Nanomater. 2018;2018:1–11. doi:10.1155/2018/9248527
  • Wang X, Wang B, Wang Y. Antibacterial orthodontic cement to combat biofilm and white spot lesions. Am J Orthod Dentofacial Orthop. 2015;148(6):974–981. doi:10.1016/j.ajodo.2015.06.01726672703
  • Jesse JT, Shobini J. A plausible antibacterial green synthesized AgNPs from Tridax procumbens leaf-flower extract. J Pure Appl Microbiol. 2018;12(4):2135–2142. doi:10.22207/JPAM.12.4.51
  • Scarpelli BB, Punhagui MF, Hoeppner MG, et al. In vitro evaluation of the remineralizing potential and antimicrobial activity of a cariostatic agent with silver nanoparticles. Braz Dent J. 2017;28(6):738–743. doi:10.1590/0103-644020170136529211131
  • Sodagar A, Akhavan A, Hashemi E, et al. Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles. Prog Orthod. 2016;17(1):40. doi:10.1186/s40510-016-0153-x27819127
  • Cheng L, Zhang K, Zhou CC, Weir MD, Zhou XD, Xu HH. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms. Int J Oral Sci. 2016;8(3):172–181. doi:10.1038/ijos.2016.1327281037
  • Zhang N, Melo MAS, Antonucci JM, et al. Novel dental cement to combat biofilms and reduce acids for orthodontic applications to avoid enamel demineralization. Materials. 2016;9(6):413.
  • Cheng L, Li R, Liu G, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed. 2018;13:3311–3327. doi:10.2147/IJN.S165125
  • Dias HB, Bernardi MIB, Marangoni VS, de Abreu Bernardi AC, de Souza Rastelli AN, Hernandes AC. Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater Sci Eng C Mater Biol Appl. 2019;96:391–401. doi:10.1016/j.msec.2018.10.06330606547
  • Espinosa-Cristóbal LF, Martinez-Castanon GA, Martínez-Martínez RE, et al. Antimicrobial sensibility of Streptococcus mutans serotypes to silver nanoparticles. Mater Sci Eng C. 2012;32(4):896–901. doi:10.1016/j.msec.2012.02.009
  • Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 2013;24(6):1465–1471. doi:10.1007/s10856-013-4894-523440430
  • Pérez-Díaz MA, Boegli L, James G, et al. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C. 2015;55:360–366. doi:10.1016/j.msec.2015.05.036
  • Abbaszadegan A, Ghahramani Y, Gholami A, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015;2015.
  • Espinosa-Cristóbal L, Martínez-Castañón G, Téllez-Déctor E, Niño-Martínez N, Zavala-Alonso N, Loyola-Rodríguez J. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles. Mater Sci Eng C. 2013;33(4):2197–2202. doi:10.1016/j.msec.2013.01.039
  • Mei ML, Li QL, Chu CH, Yiu CKY, Lo ECM. The inhibitory effects of silver diamine fluoride at different concentrations on matrix metalloproteinases. Dent Mater. 2012;28(8):903–908. doi:10.1016/j.dental.2012.04.01122578660
  • De Matteis V, Malvindi MA, Galeone A, et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine. 2015;11(3):731–739. doi:10.1016/j.nano.2014.11.00225546848
  • Kshirsagar P, Sangaru SS, Brunetti V, Malvindi MA, Pompa PP. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction. Nanotechnology. 2014;25(4):045601. doi:10.1088/0957-4484/25/4/04560124394346
  • Leo B, Chen S, Kyo Y, et al. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol. 2013;47(19):11232. doi:10.1021/es403377p23988335
  • Emmanuel R, Palanisamy S, Chen SM, et al. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater Sci Eng C Mater Biol Appl. 2015;56:374–379. doi:10.1016/j.msec.2015.06.03326249603
  • Wang S, Wu J, Yang H, Liu X, Huang Q, Lu Z. Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen Streptococcus mutans. J Mater Sci Mater Med. 2017;28(1):23. doi:10.1007/s10856-016-5837-828044252
  • Kumar A, Majumdar RS, Dhewa T. In vitro efficacy of biosynthesized AgNPs against Streptococcus mutans causing dental plaque formation. J Sci Ind Res. 2018;77(4):225–228.
  • Tavaf Z, Tabatabaei M, Khalafi-Nezhad A, Panahi F. Evaluation of antibacterial, antibofilm and antioxidant activities of synthesized silver nanoparticles (AgNPs) and casein peptide fragments against Streptococcus mutans. Eur J Integr Med. 2017;12:163–171. doi:10.1016/j.eujim.2017.05.011
  • Besinis A, De Peralta T, Handy RD. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8(7):745–754. doi:10.3109/17435390.2013.82534323875717
  • Saafan A, Zaazou MH, Sallam MK, Mosallam O, El Danaf HA. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Maced J Med Sci. 2018;6(7):1289–1295. doi:10.3889/oamjms.2018.24130087739
  • Hernandez-Sierra JF, Salas-Lopez EK, Martinez-Gutierrez F, et al. Bactericidal capacity of silver nanoparticles associated with Gantrez S-97 on Streptococcus mutans. J Clin Pediatr Dent. 2010;35(2):183–185. doi:10.17796/jcpd.35.2.c61l421mj0655lgm21417121
  • Ahn S-J, Lee S-J, Kook J-K, Lim B-S. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater. 2009;25(2):206–213. doi:10.1016/j.dental.2008.06.00218632145
  • Fan C, Chu L, Rawls HR, Norling BK, Cardenas HL, Whang K. Development of an antimicrobial resin–a pilot study. Dent Mater. 2011;27(4):322–328. doi:10.1016/j.dental.2010.11.00821112619
  • Azarsina M, Kasraei S, Yousefi-Mashouf R, Dehghani N, Shirinzad M. The antibacterial properties of composite resin containing nanosilver against Streptococcus mutans and Lactobacillus. J Contemp Dent Pract. 2013;14(6):1014–1018. doi:10.5005/jp-journals-10024-144224858742
  • Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014;39(2):109–114.24790923
  • Mohammed HF, Riad MI. The effect of silver nanoparticles incorporation in the self-etch adhesive system on its antibacterial activity and degree of conversion: an in-vitro study [version 1; peer review: awaiting peer review]. F1000Research. 2019;8:244. doi:10.12688/f1000research.17687.1
  • Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HHK. Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent Mater. 2013;29(4):462–472. doi:10.1016/j.dental.2013.01.01123422420
  • Ionescu AC, Brambilla E, Travan A, et al. Silver-polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. J Dent. 2015;43(12):1483–1490. doi:10.1016/j.jdent.2015.10.00626477347
  • Melo MA, Orrego S, Weir MD, Xu HH, Arola DD. Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface. ACS Appl Mater Interfaces. 2016;8(18):11779–11787. doi:10.1021/acsami.6b0192327081913
  • Cheng L, Weir MD, Xu HHK, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater. 2012;28(5):561–572. doi:10.1016/j.dental.2012.01.00522305716
  • Cheng L, Zhang K, Melo MAS, Weir MD, Zhou X, Xu HHK. Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J Dent Res. 2012;91(6):598–604. doi:10.1177/002203451244412822492276
  • Cheng L, Weir MD, Xu HH, et al. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res B Appl Biomater. 2012;100(5):1378–1386. doi:10.1002/jbm.b.3270922566464
  • Zhang K, Cheng L, Imazato S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41(5):464–474. doi:10.1016/j.jdent.2013.02.00123402889
  • Cheng L, Weir MD, Zhang K, Arola DD, Zhou X, Xu HHK. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent. 2013;41(4):345–355. doi:10.1016/j.jdent.2013.01.00423353068
  • Zhang K, Melo MAS, Cheng L, Weir MD, Bai Y, Xu HHK. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater. 2012;28(8):842–852. doi:10.1016/j.dental.2012.04.02722592165
  • Melo MAS, Cheng L, Zhang K, Weir MD, Rodrigues LKA, Xu HHK. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013;29(2):199–210. doi:10.1016/j.dental.2012.10.00523138046
  • Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2013;101(4):620–629. doi:10.1002/jbm.b.3286423281264
  • Zhang K, Cheng L, Wu EJ, Weir MD, Bai Y, Xu HHK. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate. J Dent. 2013;41(6):504–513. doi:10.1016/j.jdent.2013.03.01123583528
  • Li F, Weir MD, Fouad AF, Xu HHK. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent Mater. 2014;30(2):182–191. doi:10.1016/j.dental.2013.11.00424332270
  • Cao W, Zhang Y, Wang X, et al. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag(+) ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. J Mater Sci Mater Med. 2017;28(7):103. doi:10.1007/s10856-017-5918-328534286
  • Li F, Li Z, Liu G, He H. Long-term antibacterial properties and bond strength of experimental nano silver-containing orthodontic cements. J. Wuhan Univ Technol Mater Sci Ed. 2013;28(4):849–855. doi:10.1007/s11595-013-0781-7
  • Zhang N, Chen C, Weir MD, Bai Y, Xu HHK. Antibacterial and protein-repellent orthodontic cement to combat biofilms and white spot lesions. J Dent. 2015;43(12):1529–1538. doi:10.1016/j.jdent.2015.09.00626427311