301
Views
30
CrossRef citations to date
0
Altmetric
Review

Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine

, , , , & ORCID Icon
Pages 7377-7395 | Published online: 02 Oct 2020

References

  • Bartusik D, Aebisher D. (19)F applications in drug development and imaging - a review. Biomed Pharmacother. 2014;68(6):813–817. doi:10.1016/j.biopha.2014.07.01225107839
  • Longmaid HE, Adams DF, Neirinckx RD, et al. In vivo 19F NMR imaging of liver, tumor, and abscess in rats. Preliminary results. Invest Radiol. 1985;20(2):141–145. doi:10.1097/00004424-198503000-000093988465
  • Tirotta I, Dichiarante V, Pigliacelli C, et al. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev. 2015;115(2):1106–1129. doi:10.1021/cr500286d25329814
  • Krafft MP, Riess JG. Perfluorocarbons: life sciences and biomedical uses dedicated to the memory of Professor Guy Ourisson, a true RENAISSANCE man. J Polym Sci A. 2007;45(7):1185–1198. doi:10.1002/pola.21937
  • Krafft MP, Riess JG. Chemistry, physical chemistry, and uses of molecular fluorocarbon–hydrocarbon diblocks, triblocks, and related compounds–unique “apolar” components for self-assembled colloid and interface engineering. Chem Rev. 2009;109(5):1714–1792. doi:10.1021/cr800260k19296687
  • Castro O, Nesbitt AE, Lyles D. Effect of a perfluorocarbon emulsion (Fluosol‐DA) on reticuloendothelial system clearance function. Am J Hematol. 1984;16(1):15–21. doi:10.1002/ajh.28301601036695906
  • Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):492–501. doi:10.1002/wnan.3519920872
  • Spahn DR. Blood substitutes. Artificial oxygen carriers: perfluorocarbon emulsions. Crit Care. 1999;3(5):R93–97. doi:10.1186/cc36411094488
  • Noveck RJ, Shannon EJ, Leese PT, et al. Randomized safety studies of intravenous perflubron emulsion. II. Effects on immune function in healthy volunteers. Anesth Analg. 2000;91(4):812–822. doi:10.1097/00000539-200010000-0000911004031
  • Hu G, Lijowski M, Zhang H, et al. Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles. Int J Cancer. 2007;120(9):1951–1957. doi:10.1002/ijc.2258117278104
  • Riess JG. The design and development of improved fluorocarbon-based products for use in medicine and biology. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(2):215–234. doi:10.3109/107311994091174168087244
  • Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–157. doi:10.1148/radiol.243106214417267695
  • Boyd AS, Zic JA, Abraham JL. Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol. 2007;56(1):27–30. doi:10.1016/j.jaad.2006.10.04817109993
  • Hu L, Chen J, Yang X, et al. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear (1) H/(19) F MRI and perfluorocarbon nanoparticles. Magn Reson Med. 2014;71(6):2186–2196. doi:10.1002/mrm.2485123929727
  • Clark Jr LC, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science. 1966;152(3730):1755–1756. doi:10.1126/science.152.3730.17555938414
  • Sloviter HA, Mukherji B. Prolonged retention in the circulation of emulsified lipid-coated perfluorochemicals. Prog Clin Biol Res. 1983;122:181–187.6878359
  • Zuck TF, Riess JG, Biro GP. Current status of injectable oxygen carriers. Crit Rev Clin Lab Sci. 1994;31(4):295–324. doi:10.3109/104083694090846787888075
  • Hess JR. Alternative oxygen carriers. Curr Opin Hematol. 1996;3(6):492–497. doi:10.1097/00062752-199603060-000169372123
  • O’brien RN, Langlais AJ, Seufert WD. Diffusion coefficients of respiratory gases in a perfluorocarbon liquid. Science. 1982;217(4555):153–155. doi:10.1126/science.68069026806902
  • Zhang W, Ito Y, Berlin E, et al. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2003;44(7):3119–3123. doi:10.1167/iovs.02-112212824260
  • Riess JG. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif Cells Blood Substit Immobil Biotechnol. 2005;33(1):47–63. doi:10.1081/BIO-20004665915768565
  • Yu JX, Kodibagkar VD, Cui W, et al. 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem. 2005;12(7):819–848.15853714
  • Kodibagkar VD, Wang X, Mason RP. Physical principles of quantitative nuclear magnetic resonance oximetry. Front Biosci. 2008;13:1371–1384. doi:10.2741/276817981636
  • Laukemper-Ostendorf S, Scholz A, Burger K, et al. 19F-MRI of perflubron for measurement of oxygen partial pressure in porcine lungs during partial liquid ventilation. Magn Reson Med. 2002;47(1):82–89. doi:10.1002/mrm.1000811754446
  • Chen J, Lanza GM, Wickline SA. Quantitative magnetic resonance fluorine imaging: today and tomorrow. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):431–440. doi:10.1002/wnan.8720564465
  • Kaneda MM, Caruthers S, Lanza GM, et al. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng. 2009;37(10):1922–1933. doi:10.1007/s10439-009-9643-z19184435
  • Chen J, Pan H, Lanza GM, et al. Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy. Adv Chronic Kidney Dis. 2013;20(6):466–478. doi:10.1053/j.ackd.2013.08.00424206599
  • Schmieder AH, Caruthers SD, Keupp J, et al. Recent advances in (19)fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering (Beijing). 2015;1(4):475–489. doi:10.15302/J-ENG-201510327110430
  • Faas HM, Krupa JL, Taylor AJ, et al. Accelerated (19)F.MRI detection of matrix metalloproteinase-2/-9 through responsive deactivation of paramagnetic relaxation enhancement. Contrast Media Mol Imaging. 2019;2019:4826520. doi:10.1155/2019/482652030944549
  • Keupp J, Rahmer J, Grasslin I, et al. Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents. Magn Reson Med. 2011;66(4):1116–1122. doi:10.1002/mrm.2287721394779
  • Otake Y, Soutome Y, Hirata K, et al. Double-tuned radiofrequency coil for (19)F and (1)H imaging. Magn Reson Med Sci. 2014;13(3):199–205. doi:10.2463/mrms.2013-009424990464
  • Villavalverde P, Rodriguez IR, Padro D, et al. A dual 1H/19F birdcage coil for small animals at 7 T MRI. MRMPB. 2019;32(1):79–87.
  • Constantinides C, Maguire M, Mcneill E, et al. Fast, quantitative, murine cardiac 19F MRI/MRS of PFCE-labeled progenitor stem cells and macrophages at 9.4T. PLoS One. 2018;13(1):e0190558. doi:10.1371/journal.pone.019055829324754
  • Hockett FD, Wallace KD, Schmieder AH, et al. Simultaneous dual frequency 1H and 19F open coil imaging of arthritic rabbit knee at 3T. IEEE Trans Med Imaging. 2011;30(1):22–27. doi:10.1109/TMI.2010.205668920699209
  • Ji Y, Waiczies H, Winter L, et al. Eight-channel transceiver RF coil array tailored for (1)H/(1)(9)F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed. 2015;28(6):726–737. doi:10.1002/nbm.330025916199
  • Jacoby C, Temme S, Mayenfels F, et al. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014;27(3):261–271. doi:10.1002/nbm.305924353148
  • Mastropietro A, De Bernardi E, Breschi GL, et al. Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for 19F-MRI studies. J Magn Reson Imaging. 2014;40(1):162–170. doi:10.1002/jmri.2434725050436
  • Kadayakkara DK, Damodaran K, Hitchens TK, et al. 19F spin–lattice relaxation of perfluoropolyethers: dependence on temperature and magnetic field strength (7.0–14.1 T). J Magn Reson. 2014;242:18–22. doi:10.1016/j.jmr.2014.01.01424594752
  • Srinivas M, Cruz LJ, Bonetto F, et al. Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials. 2010;31(27):7070–7077. doi:10.1016/j.biomaterials.2010.05.06920566214
  • Goette MJ, Keupp J, Rahmer J, et al. Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med. 2015;74(2):537–543. doi:10.1002/mrm.2543725163853
  • Lamerichs R, Yildirim MJ, Nederveen A, et al. In vivo 3D 19 F fast spectroscopic imaging (F-uTSI) of angiogenesis on Vx-2 tumors in rabbits using targeted perfluorocarbon emulsions [M]. Proc Int Soc Mag Reson Med. 2017;18.
  • Van Heeswijk RB, Colotti R, Darcot E, et al. Chemical shift encoding (CSE) for sensitive fluorine-19 MRI of perfluorocarbons with complex spectra. Magn Reson Med. 2017;79(5):2724–2730.28862351
  • Colotti R, Bastiaansen J, Wilson A, et al. Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla. Magn Reson Med. 2017;77(6):2263–2271. doi:10.1002/mrm.2631727385530
  • Peng Q, Yuan Y, Zhang H, et al. 19F CEST imaging probes for metal ion detection. Org Biomol Chem. 2017;15(30):6441–6446. doi:10.1039/C7OB01068K28741638
  • Schoormans J, Calcagno C, Daal MRR, et al. An iterative sparse deconvolution method for simultaneous multicolor 19 F-MRI of multiple contrast agents. Magn Reson Med. 2020;83(1):228–239. doi:10.1002/mrm.2792631441541
  • De Vries A, Moonen RPM, Yildirim M, et al. Relaxometric studies of gadolinium‐functionalized perfluorocarbon nanoparticles for MR imaging. Contrast Media Mol Imaging. 2014;9(1):83–91. doi:10.1002/cmmi.154124470297
  • Flogel U, Ding Z, Hardung H, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008;118(2):140–148. doi:10.1161/CIRCULATIONAHA.107.73789018574049
  • Guden-Silber T, Temme S, Jacoby C, et al. Biomedical (19)F MRI using perfluorocarbons. Methods Mol Biol. 2018;1718:235–257.29341012
  • Makela AV, Gaudet JM, Foster PJ. Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking. Sci Rep. 2017;7:42109. doi:10.1038/srep4210928176853
  • Zhou Z, Lu Z. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev. 2017;113:24–48. doi:10.1016/j.addr.2016.07.01227497513
  • Beik J, Jafariyan M, Montazerabadi A, et al. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement. Artif Cells Nanomed Biotechnol. 2017;46(8):1993–2001.29233015
  • Ta HT, Li Z, Hagemeyer CE, et al. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials. 2017;134:31–42. doi:10.1016/j.biomaterials.2017.04.03728453956
  • Wang K, Pan D, Schmieder AH, et al. Synergy between surface and core entrapped metals in a mixed manganese–gadolinium nanocolloid affords safer MR imaging of sparse biomarkers. Nanomedicine. 2015;11(3):601–609. doi:10.1016/j.nano.2014.12.00925652900
  • Pham CTN, Mitchell LM, Huang J, et al. Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces. J Biol Chem. 2011;286(1):123–130. doi:10.1074/jbc.M110.18076021047788
  • Tennstaedt A, Mastropietro A, Nelles M, et al. In vivo fate imaging of intracerebral stem cell grafts in mouse brain. PLoS One. 2015;10(12):e0144262. doi:10.1371/journal.pone.014426226641453
  • Himmelreich U, Weber R, Ramoscabrer P, et al. Improved stem cell MR detectability in animal models by modification of the inhalation gas. Mol Imaging. 2005;4(2):104–109. doi:10.1162/1535350020050419616105508
  • Lanza GM, Wallace KD, Scott MJ, et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation. 1996;94(12):3334–3340. doi:10.1161/01.CIR.94.12.33348989148
  • Huynh E, Leung BY, Helfield BL, et al. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol. 2015;10(4):325–332. doi:10.1038/nnano.2015.2525822929
  • Hitchens TK, Ye Q, Eytan DF, et al. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med. 2011;65(4):1144–1153. doi:10.1002/mrm.2270221305593
  • Srinivas M, Turner MS, Janjic JM, et al. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med. 2009;62(3):747–753. doi:10.1002/mrm.2206319585593
  • Zhou H-F, Yan H, Senpan A, et al. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles. Biomaterials. 2012;33(33):8632–8640. doi:10.1016/j.biomaterials.2012.08.00522922023
  • Caruthers SD, Cyrus T, Winter PM, et al. Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(3):311–323. doi:10.1002/wnan.920049799
  • Lanza GM, Winter PM, Caruthers SD, et al. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis. 2010;13(2):189–202. doi:10.1007/s10456-010-9166-020411320
  • Pan D, Caruthers SD, Chen J, et al. Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem. 2010;2(3):471–490. doi:10.4155/fmc.10.520485473
  • Lanza GM, Lorenz CH, Fischer SE, et al. Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent. Acad Radiol. 1998;5(Suppl 1):SS173–174. doi:10.1016/S1076-6332(98)80097-4
  • Lanza GM, Trousil RL, Wallace KD, et al. In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J Acoust Soc Am. 1998;104(6):3665–3672. doi:10.1121/1.4239489857523
  • Lanza GM, Winter PM, Caruthers SD, et al. Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol. 2004;11(6):733–743. doi:10.1016/j.nuclcard.2004.09.00215592197
  • Lanza GM, Yu X, Winter PM, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation. 2002;106(22):2842–2847. doi:10.1161/01.CIR.0000044020.27990.3212451012
  • Ruiz-Cabello J, Barnett BP, Bottomley PA, et al. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011;24(2):114–129. doi:10.1002/nbm.157020842758
  • Ahrens ET, Zhong J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 2013;26(7):860–871. doi:10.1002/nbm.294823606473
  • Du W, Xu Z, NyströM AM, et al. 19F- and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery. Bioconjug Chem. 2008;19(12):2492–2498. doi:10.1021/bc800396h19049473
  • Langereis S, Keupp J, Van Velthoven JL, et al. A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J Am Chem Soc. 2009;131(4):1380–1381. doi:10.1021/ja808753219173663
  • Partlow KC, Lanza GM, Wickline SA. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials. 2008;29(23):3367–3375. doi:10.1016/j.biomaterials.2008.04.03018485474
  • Morawski AM, Winter PM, Crowder KC, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med. 2004;51(3):480–486. doi:10.1002/mrm.2001015004788
  • Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation. 2001;104(11):1280–1285. doi:10.1161/hc3601.09430311551880
  • Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res. 2003;63(18):5838–5843.14522907
  • Diou O, Fattal E, Delplace V, et al. RGD decoration of PEGylated polyester nanocapsules of perfluorooctyl bromide for tumor imaging: influence of pre or post-functionalization on capsule morphology. Eur J Pharm Biopharm. 2014;87(1):170–177. doi:10.1016/j.ejpb.2013.12.00324333400
  • Schmieder AH, Winter PM, Williams TA, et al. Molecular MR imaging of neovascular progression in the Vx2 tumor with alphavbeta3-targeted paramagnetic nanoparticles. Radiology. 2013;268(2):470–480. doi:10.1148/radiol.1312078923771914
  • Giraudeau C, Geffroy F, Meriaux S, et al. 19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles. Angiogenesis. 2013;16(1):171–179. doi:10.1007/s10456-012-9310-023053783
  • Xuan J, Chen Y, Zhu L, et al. Ultrasound molecular imaging with cRGD-PLGA-PFOB nanoparticles for liver fibrosis staging in a rat model. Oncotarget. 2017;8(65):108676–108691. doi:10.18632/oncotarget.2135829312560
  • Vu-Quang H, Vinding MS, Nielsen T, et al. Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared and (19)F magnetic resonance imaging modalities. Nanomedicine. 2016;12(7):1873–1884. doi:10.1016/j.nano.2016.04.01027133191
  • Li K, Liu Y, Zhang S, et al. Folate receptor-targeted ultrasonic PFOB nanoparticles: synthesis, characterization and application in tumor-targeted imaging. Int J Mol Med. 2017;39(6):1505–1515. doi:10.3892/ijmm.2017.297528487935
  • Hu Y, Wang Y, Jiang J, et al. Preparation and characterization of novel perfluorooctyl bromide nanoparticle as ultrasound contrast agent via layer-by-layer self-assembly for folate-receptor-mediated tumor imaging. Biomed Res Int. 2016;2016:6381464. doi:10.1155/2016/638146427652265
  • Liu X, Zhao J, Guo D, et al. Synthesis and evaluation of perfluorooctylbromide nanoparticles modified with a folate receptor for targeting ovarian cancer: in vitro and in vivo experiments. Int J Clin Exp Med. 2015;8(6):10122–10131.26309711
  • Chen WT, Kang ST, Lin JL, et al. Targeted tumor theranostics using folate-conjugated and camptothecin-loaded acoustic nanodroplets in a mouse xenograft model. Biomaterials. 2015;53:699–708. doi:10.1016/j.biomaterials.2015.02.12225890765
  • Chen H, Chen L, Liang R, et al. Ultrasound and magnetic resonance molecular imaging of atherosclerotic neovasculature with perfluorocarbon magnetic nanocapsules targeted against vascular endothelial growth factor receptor 2 in rats. Mol Med Rep. 2017;16(5):5986–5996. doi:10.3892/mmr.2017.731428849045
  • Lother A, Deng L, Huck M, et al. Endothelial cell mineralocorticoid receptors oppose VEGF-induced gene expression and angiogenesis. J Endocrinol. 2019;240(1):15–26. doi:10.1530/JOE-18-049430400069
  • Waters EA, Chen J, Yang X, et al. Detection of targeted perfluorocarbon nanoparticle binding using 19F diffusion weighted MR spectroscopy. Magn Reson Med. 2008;60(5):1232–1236. doi:10.1002/mrm.2179418956417
  • Xu X, Zhang R, Liu F, et al. 19F MRI in orthotopic cancer model via intratracheal administration of ανβ3-targeted perfluorocarbon nanoparticles. Nanomedicine. 2018;13(20):2551–2562. doi:10.2217/nnm-2018-005130338723
  • Bae PK, Jung J, Lim SJ, et al. Bimodal perfluorocarbon nanoemulsions for nasopharyngeal carcinoma targeting. Mol Imaging Biol. 2013;15(4):401–410. doi:10.1007/s11307-013-0622-223508465
  • Patel J, Amrutiya J, Bhatt P, et al. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul. 2018;35(2):204–217. doi:10.1080/02652048.2018.145356029542378
  • Sok JC, Coppelli FM, Thomas SM, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12(17):5064–5073. doi:10.1158/1078-0432.CCR-06-091316951222
  • Wang Y, Zhou J, Qiu L, et al. Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials. 2014;35(14):4297–4309.24565522
  • Li F, Mei H, Gao Y, et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials. 2017;145:56–71. doi:10.1016/j.biomaterials.2017.08.03028843733
  • Tatum JL, Kelloff GJ, Gillies RJ, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol. 2006;82(10):699–757. doi:10.1080/0955300060100232417118889
  • Zhao D, Jiang L, Mason RP. Measuring changes in tumor oxygenation. Methods Enzymol. 2004;386:378–418.15120262
  • Spiess BD. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol (1985). 2009;106(4):1444–1452. doi:10.1152/japplphysiol.90995.200819179651
  • Yu JX, Kodibagkar VD, Cui W, et al. 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem. 2005;12(7):819–848. doi:10.2174/092986705350734215853714
  • Sloviter HA, Kamimoto T. Erythrocyte substitute for perfusion of brain. Nature. 1967;216(5114):458–460. doi:10.1038/216458a06057248
  • Faithfull NS, King CE, Cain SM. Peripheral vascular responses to fluorocarbon administration. Microvasc Res. 1987;33(2):183–193. doi:10.1016/0026-2862(87)90016-13587075
  • Christensen CW, Reeves WC, Lassar TA, et al. Inadequate subendocardial oxygen delivery during perfluorocarbon perfusion in a canine model of ischemia. Am Heart J. 1988;115(1 Pt 1):30–37. doi:10.1016/0002-8703(88)90514-53336983
  • Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–447. doi:10.1038/nrc136715170446
  • Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18(4):243–259. doi:10.1385/MO:18:4:24311918451
  • Xie D, Kim S, Kohli V, et al. Hypoxia-responsive 19F MRI probes with improved redox properties and biocompatibility. Inorg Chem. 2017;56(11):6429–6437. doi:10.1021/acs.inorgchem.7b0050028537705
  • Parhami P, Fung B. Fluorine-19 relaxation study of perfluoro chemicals as oxygen carriers. J Phys Chem. 1983;87(11):1928–1931.
  • Zhao D, Constantinescu A, Hahn EW, et al. Tumor oxygen dynamics with respect to growth and respiratory challenge: investigation of the dunning prostate R3327-HI tumor 1. Radiat Res. 2001;156(5):510–520. doi:10.1667/0033-7587(2001)156[0510:TODWRT]2.0.CO;211604064
  • Song Y, Constantinescu A, Mason RP. Dynamic breast tumor oximetry: the development of prognostic radiology. Technol Cancer Res Treat. 2002;1(6):471–478. doi:10.1177/15330346020010060712625774
  • Zhao D, Constantinescu A, Chang CH, et al. Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327-HI tumor 1. Radiat Res. 2003;159(5):621–631. doi:10.1667/0033-7587(2003)159[0621:COTODW]2.0.CO;212710873
  • Sc BPJVDSM, Heerschap A, Simonetti AW, et al. Characterization and validation of noninvasive oxygen tension measurements in human glioma xenografts by 19F-MR relaxometry. Int J Radiat Oncol Biol Phys. 1999;44(3):649–658. doi:10.1016/S0360-3016(98)00555-010348296
  • Liu S, Shah S, Wilmes LJ, et al. Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn Reson Med. 2011;66(6):1722–1730. doi:10.1002/mrm.2296821688315
  • Shi Y, Oeh J, Easthamanderson J, et al. Mapping in vivo tumor oxygenation within viable tumor by 19F-MRI and multispectral analysis. Neoplasia. 2013;15(11):1241–1250. doi:10.1593/neo.13146824339736
  • Hunjan S, Zhao D, Constantinescu A, et al. Tumor oximetry: demonstration of an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor. Int J Radiat Oncol Biol Phys. 2001;49(4):1097–1108. doi:10.1016/S0360-3016(00)01460-711240252
  • Magat J, Jordan BF, Cron GO, et al. Noninvasive mapping of spontaneous fluctuations in tumor oxygenation using 19F MRI. Med Phys. 2010;37(10):5434–5441. doi:10.1118/1.348405621089779
  • Jordan BF, Cron GO, Gallez B. Rapid monitoring of oxygenation by 19F magnetic resonance imaging: simultaneous comparison with fluorescence quenching. Magn Reson Med. 2009;61(3):634–638. doi:10.1002/mrm.2159419097235
  • Kadayakkara DK, Janjic JM, Pusateri LK, et al. In vivo observation of intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic response in the CNS using fluorine-19 MRI. Magn Reson Med. 2010;64(5):1252–1259. doi:10.1002/mrm.2250620860007
  • Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–763. doi:10.1038/nri353124013185
  • Ahrens ET, Helfer BM, O’hanlon CF, et al. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med. 2014;72(6):1696–1701. doi:10.1002/mrm.2545425241945
  • Boehm-Sturm P, Mengler L, Wecker S, et al. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One. 2011;6(12):e29040. doi:10.1371/journal.pone.002904022216163
  • Bulte JW. Hot spot MRI emerges from the background. Nat Biotechnol. 2005;23(8):945–946.16082363
  • Ye YX, Basse-Lusebrink TC, Arias-Loza PA, et al. Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging. Circulation. 2013;128(17):1878–1888. doi:10.1161/CIRCULATIONAHA.113.00073124025595
  • Van Heeswijk RB, De Blois J, Kania G, et al. Selective in vivo visualization of immune-cell infiltration in a mouse model of autoimmune myocarditis by fluorine-19 cardiac magnetic resonance. Circ Cardiovasc Imaging. 2013;6(2):277–284. doi:10.1161/CIRCIMAGING.112.00012523343515
  • Ebner B, Behm P, Jacoby C, et al. Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ Cardiovasc Imaging. 2010;3(2):202–210. doi:10.1161/CIRCIMAGING.109.90231220061515
  • Van Heeswijk RB, Pellegrin M, Flogel U, et al. Fluorine MR imaging of inflammation in atherosclerotic plaque in vivo. Radiology. 2015;275(2):421–429. doi:10.1148/radiol.1414137125496216
  • Flogel U, Burghoff S, Van Lent PL, et al. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med. 2012;4(146):146ra108. doi:10.1126/scitranslmed.3003717
  • Balducci A, Wen Y, Zhang Y, et al. A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology. 2013;2(2):e23034. doi:10.4161/onci.2303423526711
  • Constantinides C, Basnett P, Lukasiewicz B, et al. In vivo tracking and (1)H/(19)F magnetic resonance imaging of biodegradable polyhydroxyalkanoate/polycaprolactone blend scaffolds seeded with labeled cardiac stem cells. ACS Appl Mater Interfaces. 2018;10(30):25056–25068. doi:10.1021/acsami.8b0609629965724
  • Fink C, Gaudet JM, Fox MS, et al. 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep. 2018;8(1):590. doi:10.1038/s41598-017-19031-029330541
  • Constantinides C, Mcneill E, Carnicer R, et al. Improved cellular uptake of perfluorocarbon nanoparticles for in vivo murine cardiac (19)F MRS/MRI and temporal tracking of progenitor cells. Nanomedicine. 2019;18:391–401. doi:10.1016/j.nano.2018.10.01430448526
  • Ramos IT, Henningsson M, Nezafat M, et al. Simultaneous assessment of cardiac inflammation and extracellular matrix remodeling after myocardial infarction. Circ Cardiovasc Imaging. 2018;11(11). doi:10.1161/CIRCIMAGING.117.007453.
  • Gaudet JM, Ribot EJ, Chen Y, et al. Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS One. 2015;10(3):0118544. doi:10.1371/journal.pone.0118544
  • Manzo T, Heslop HE, Rooney CM. Antigen-specific T cell therapies for cancer. Hum Mol Genet. 2015;24(R1):R67–73. doi:10.1093/hmg/ddv27026160910
  • Gonzales C, Yoshihara HA, Dilek N, et al. In-vivo detection and tracking of T cells in various organs in a melanoma tumor model by 19F-fluorine MRS/MRI. PLoS One. 2016;11(10):e0164557. doi:10.1371/journal.pone.016455727736925
  • Gaudet JM, Hamilton AM, Chen Y, et al. Application of dual 19F and iron cellular MRI agents to track the infiltration of immune cells to the site of a rejected stem cell transplant. Magn Reson Med. 2017;78(2):713–720. doi:10.1002/mrm.2640027610596
  • Makela AV, Foster PJ. Imaging macrophage distribution and density in mammary tumors and lung metastases using fluorine‐19 MRI cell tracking. Magn Reson Med. 2018;80(3):1138–1147. doi:10.1002/mrm.2708129327789
  • Ribot EJ, Gaudet JM, Chen Y, et al. In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. Int J Nanomedicine. 2014;9(1):1731–1739. doi:10.2147/IJN.S5912724748787
  • Boehmsturm P, Aswendt M, Minassian A, et al. A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials. 2014;35(7):2218–2226. doi:10.1016/j.biomaterials.2013.11.08524355489
  • Fink C, Smith M, Gaudet JM, et al. Fluorine-19 cellular MRI detection of in vivo dendritic cell migration and subsequent induction of tumor antigen-specific immunotherapeutic response. Mol Imaging Biol. 2019;1–13.
  • Partlow KC, Chen J, Brant JA, et al. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 2007;21(8):1647–1654. doi:10.1096/fj.06-6505com17284484
  • Constantinides C, Mean R, Janssen BJ. Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. ILAR J. 2011;52(3):e21.21677360
  • Constantinides C, Maguire ML, Stork L, et al. Temporal accumulation and localization of isoflurane in the C57BL/6 mouse and assessment of its potential contamination in (19) F MRI with perfluoro-crown-ether-labeled cardiac progenitor cells at 9.4 Tesla. J Magn Reson Imaging. 2017;45(6):1659–1667. doi:10.1002/jmri.2556427990708
  • Van Heeswijk RB, Pilloud Y, Flogel U, et al. Fluorine-19 magnetic resonance angiography of the mouse. PLoS One. 2012;7(7):42236. doi:10.1371/journal.pone.0042236
  • Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst. 2007;99(14):1095–1106. doi:10.1093/jnci/djm04317623798
  • Rapoport N, Christensen DA, Kennedy AM, et al. Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. Ultrasound Med Biol. 2010;36(3):419–429. doi:10.1016/j.ultrasmedbio.2009.11.00920133040
  • Rapoport N, Pitt WG, Sun H, et al. Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Release. 2003;91(1–2):85–95. doi:10.1016/S0168-3659(03)00218-912932640
  • Rapoport N, Gupta R, Kim YS, et al. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: insight through intravital imaging. J Control Release. 2015;206:153–160. doi:10.1016/j.jconrel.2015.03.01025776738
  • Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400. doi:10.1038/nrd138115136787
  • Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol. 2003;13(2):159–167. doi:10.1016/S1044-579X(02)00133-512654259
  • Winter PM, Schmieder AH, Caruthers SD, et al. Minute dosages of alpha(nu)beta3-targeted fumagillin nanoparticles impair Vx-2 tumor angiogenesis and development in rabbits. FASEB J. 2008;22(8):2758–2767. doi:10.1096/fj.07-10392918362202
  • Shin SH, Park EJ, Min C, et al. Tracking perfluorocarbon nanoemulsion delivery by 19F MRI for precise high intensity focused ultrasound tumor ablation. Theranostics. 2017;7(3):562–572. doi:10.7150/thno.1689528255351
  • Niu D, Wang X, Li Y, et al. Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv Mater. 2013;25(19):2686–2692. doi:10.1002/adma.20120431623447424
  • Gupta R, Cvetkovic D, Ma CM, et al. Targeted approach for prostate cancer treatment: synthesis and characterization of docetaxel-loaded perfluorocarbon nanodroplets. J Cancer Sci Clin Oncol. 2014;1(1).
  • Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008;27(45):5932–5943. doi:10.1038/onc.2008.26718836474
  • Bouchlaka MN, Ludwig KD, Gordon JW, et al. (19)F-MRI for monitoring human NK cells in vivo. Oncoimmunology. 2016;5(5):e1143996. doi:10.1080/2162402X.2016.114399627467963
  • Neuschmelting V, Lockau H, Ntziachristos V, et al. Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model. Radiology. 2016;280(1):137–150. doi:10.1148/radiol.201616019127144537
  • Swider E, Daoudi K, Staal AHJ, et al. Clinically-applicable perfluorocarbon-loaded nanoparticles for in vivo photoacoustic, (19)F magnetic resonance and fluorescent imaging. Nanotheranostics. 2018;2(3):258–268. doi:10.7150/ntno.2620829868350
  • Ding Z, Sun H, Ge S, et al. Furin‐controlled Fe3O4 nanoparticle aggregation and 19F signal “Turn‐On” for precise MR imaging of tumors. Adv Funct Mater. 2019;29(43):1903860. doi:10.1002/adfm.201903860
  • Huang P, Guo W, Yang G, et al. Fluorine meets amine: reducing microenvironment-induced amino-activatable nanoprobes for (19)F-magnetic resonance imaging of biothiols. ACS Appl Mater Interfaces. 2018;10(22):18532–18542. doi:10.1021/acsami.8b0376429775280
  • Akazawa K, Sugihara F, Nakamura T, et al. Highly sensitive detection of caspase-3/7 activity in living mice using enzyme-responsive 19F MRI nanoprobes. Bioconjug Chem. 2018;29(5):1720–1728. doi:10.1021/acs.bioconjchem.8b0016729714062
  • Yuan Y, Ge S, Sun H, et al. Intracellular self-assembly and disassembly of 19F nanoparticles confer respective “off” and “on” 19F NMR/MRI signals for legumain activity detection in zebrafish. ACS Nano 2015;9(5):5117–5124. doi:10.1021/acsnano.5b00287
  • Guo C, Zhang Y, Li Y, et al. 19F MRI nanoprobes for the turn-on detection of phospholipase A2 with a low background. Anal Chem. 2019;91(13):8147–8153. doi:10.1021/acs.analchem.9b0043531180206
  • Yuan Y, Sun H, Ge S, et al. Controlled intracellular self-assembly and disassembly of 19F nanoparticles for MR imaging of caspase 3/7 in zebrafish. ACS Nano. 2015;9(1):761–768. doi:10.1021/nn506265725544315
  • Merkwitz C, Blaschuk O, Winkler J, et al. Advantages and limitations of salmon-gal/tetrazolium salt histochemistry for the detection of LacZ reporter gene activity in murine epithelial tissue. J Histochem Cytochem. 2017;65(4):197–206. doi:10.1369/002215541769033628146365
  • Nakamura T, Matsushita H, Sugihara F, et al. Activatable 19F MRI nanoparticle probes for the detection of reducing environments. Angew Chem Int Ed Engl. 2015;54(3):1007–1010. doi:10.1002/anie.20140936525413833
  • Kadakia RT, Xie D, Martinez D, et al. A dual-responsive probe for detecting cellular hypoxia using 19F magnetic resonance and fluorescence. Chem Commun (Camb). 2019;55(60):8860–8863. doi:10.1039/C9CC00375D31219109
  • Fu C, Tang J, Pye A, et al. Fluorinated glycopolymers as reduction-responsive (19)F MRI agents for targeted imaging of cancer. Biomacromolecules. 2019;20(5):2043–2050. doi:10.1021/acs.biomac.9b0024130995836
  • Akazawa K, Sugihara ;F, Minoshima M, et al.Sensing caspase-1 activity using activatable 19F MRI nanoprobes with improved turn-on kinetics. Chem Commun (Camb) 2018;54(83):11785–11788. doi:10.1039/C8CC05381B
  • Stubbs M, Mcsheehy PM, Griffiths JR, et al. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000;6(1):15–19. doi:10.1016/S1357-4310(99)01615-910637570
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10(10):767–777. doi:10.1038/nrd355421921921
  • Huang X, Huang G, Zhang S, et al. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew Chem Int Ed Engl. 2013;52(31):8074–8078. doi:10.1002/anie.20130113523788453
  • Guo C, Xu S, Arshad A, et al. A pH-responsive nanoprobe for turn-on 19 F-magnetic resonance imaging. Chem Commun (Camb). 2018;54(70):9853–9856. doi:10.1039/C8CC06129G30112535
  • Zhang C, Li L, Han FY, et al. Integrating fluorinated polymer and manganese-layered double hydroxide nanoparticles as pH-activated (19) F MRI agents for specific and sensitive detection of breast cancer. Small. 2019;15(36):e1902309. doi:10.1002/smll.20190230931328398
  • Wang K, Peng H, Thurecht KJ, et al. pH-responsive star polymer nanoparticles: potential 19F MRI contrast agents for tumour-selective imaging. Polym Chem. 2013;4(16):4480. doi:10.1039/c3py00654a
  • Chen S, Yang Y, Li H, et al. pH-Triggered Au-fluorescent mesoporous silica nanoparticles for 19 F MR/fluorescent multimodal cancer cellular imaging. Chem Commun (Camb). 2014;50(3):283–285. doi:10.1039/C3CC47324D24170041
  • Temme S, Grapentin C, Quast C, et al. Noninvasive imaging of early venous thrombosis by 19F magnetic resonance imaging with targeted perfluorocarbon nanoemulsions. Circulation. 2015;131(16):1405–1414. doi:10.1161/CIRCULATIONAHA.114.01096225700177
  • Waters EA, Chen J, Allen JS, et al. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J Cardiovasc Magn Reson. 2008;10:43. doi:10.1186/1532-429X-10-4318817557
  • Kuethe DO, Caprihan A, Fukushima E, et al. Imaging lungs using inert fluorinated gases. Magn Reson Med. 1998;39(1):85–88. doi:10.1002/mrm.19103901149438441
  • Schreiber WG, Eberle B, Laukemper-Ostendorf S, et al. Dynamic (19)F-MRI of pulmonary ventilation using sulfur hexafluoride (SF(6)) gas. Magn Reson Med. 2001;45(4):605–613. doi:10.1002/mrm.108211283988
  • Schmieder AH, Wang K, Zhang H, et al. Characterization of early neovascular response to acute lung ischemia using simultaneous (19)F/(1)H MR molecular imaging. Angiogenesis. 2014;17(1):51–60. doi:10.1007/s10456-013-9377-223918207
  • Srinivas M, Morel PA, Ernst LA, et al. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58(4):725–734. doi:10.1002/mrm.2135217899609
  • Altes TA, Salerno M. Hyperpolarized gas MR imaging of the lung. J Thorac Imaging. 2004;19(4):250–258. doi:10.1097/01.rti.0000142837.52729.3815502612
  • Couch MJ, Blasiak B, Tomanek B, et al. Hyperpolarized and inert gas MRI: the future. Mol Imaging Biol. 2015;17(2):149–162. doi:10.1007/s11307-014-0788-225228404
  • Halaweish AF, Moon RE, Foster WM, et al. Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans. Chest. 2013;144(4):1300–1310. doi:10.1378/chest.12-259723722696
  • Couch MJ, Ball IK, Li T, et al. Pulmonary ultrashort echo time 19F MR imaging with inhaled fluorinated gas mixtures in healthy volunteers: feasibility. Radiology. 2013;269(3):903–909. doi:10.1148/radiol.1313060923985278
  • Neubauer AM, Caruthers SD, Hockett FD, et al. Fluorine cardiovascular magnetic resonance angiography in vivo at 1.5 T with perfluorocarbon nanoparticle contrast agents. J Cardiovasc Magn Reson. 2007;9(3):565–573. doi:10.1080/1097664060094548117365236
  • Ahrens ET, Flores R, Xu H, et al. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol. 2005;23(8):983–987. doi:10.1038/nbt112116041364
  • Zhang H, Zhang L, Myerson J, et al. Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermanent nanoparticle contrast agents. PLoS One. 2011;6(10):e26385. doi:10.1371/journal.pone.002638522028868
  • Ruiz-Cabello J, Walczak P, Kedziorek DA, et al. In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med. 2008;60(6):1506–1511. doi:10.1002/mrm.2178319025893
  • Kislukhin AA, Xu H, Adams SR, et al. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat Mater. 2016;15(6):662–668. doi:10.1038/nmat458526974409
  • Koshkina O, Lajoinie G, Baldelli F, et al. Multicore liquid perfluorocarbon-loaded multimodal nanoparticles for stable ultrasound and ~(19)F MRI applied to in vivo cell tracking. Adv Funct Mater. 2019;29(19):1806485.1806481–1806485.1806414.
  • Mason RP, Antich PP, Babcock EE, et al. Perfluorocarbon imaging in vivo: a 19F MRI study in tumor-bearing mice. Magn Reson Imaging. 1989;7(5):475–485. doi:10.1016/0730-725X(89)90402-52607898
  • Meyer KL, Carvlin MJ, Mukherji B, et al. Fluorinated blood substitute retention in the rat measured by fluorine-19 magnetic resonance imaging. Invest Radiol. 1992;27(8):620–627. doi:10.1097/00004424-199208000-000121428740
  • Morawski AM, Winter PM, Yu X, et al. Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn Reson Med. 2004;52(6):1255–1262. doi:10.1002/mrm.2028715562481
  • Zhou ZX, Zhang BG, Zhang H, et al. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells. Acta Pharmacol Sin. 2009;30(11):1577–1584. doi:10.1038/aps.2009.14619890365
  • Ahrens ET, Young WB, Xu H, et al. Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance. Biotechniques. 2011;50(4):229–234. doi:10.2144/00011365221548906
  • Goette MJ, Schmieder AH, Williams TA, et al. In vivo quantitative imaging of angiogenesis-targeted PFOB nanoparticles in a hypercholesterol rabbit model using 19F-MRI with ultra-short echo time balanced SSFP. J Cardiovasc Magn Reson. 2012;14(S1). doi:10.1186/1532-429X-14-S1-M8.
  • Hu L, Chen J, Yang X, et al. Rapid quantification of oxygen tension in blood flow with a fluorine nanoparticle reporter and a novel blood flow-enhanced-saturation-recovery sequence. Magn Reson Med. 2013;70(1):176–183. doi:10.1002/mrm.2443622915328
  • Shimizu M, Kobayashi T, Morimoto H, et al. Tumor imaging with anti-CEA antibody labeled 19F emulsion. Magn Reson Med. 1987;5(3):290–295. doi:10.1002/mrm.19100503113431398
  • Thomas C, Counsell C, Wood P, et al. Use of fluorine-19 nuclear magnetic resonance spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice. J Natl Cancer Inst. 1992;84(3):174–180. doi:10.1093/jnci/84.3.1741542128
  • Mason RP, Shukla H, Antich PP. In vivo oxygen tension and temperature: simultaneous determination using 19F NMR spectroscopy of perfluorocarbon. Magn Reson Med. 1993;29(3):296–302. doi:10.1002/mrm.19102903048450738
  • Baldwin NJ, Wang Y, Ng TC. In situ 19F MRS measurement of RIF-1 tumor blood volume: corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size. Magn Reson Imaging. 1996;14(3):275–280. doi:10.1016/0730-725X(95)02080-D8725193
  • Xu X, Yan Y, Liu F, et al. Folate receptor-targeted (19) F MR molecular imaging and proliferation evaluation of lung cancer. J Magn Reson Imaging. 2018;48(6):1617–1625. doi:10.1002/jmri.2617729756310
  • Luo Z, Jin K, Pang Q, et al. On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl Mater Interfaces. 2017;9(37):31612–31625. doi:10.1021/acsami.7b1086628861994
  • Liang X, Fang L, Li X, et al. Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy. Biomaterials. 2017;132:72–84. doi:10.1016/j.biomaterials.2017.04.00628411450
  • Wu L, Wen X, Wang X, et al. Local intratracheal delivery of perfluorocarbon nanoparticles to lung cancer demonstrated with magnetic resonance multimodal imaging. Theranostics. 2018;8(2):563–574. doi:10.7150/thno.2146629290827