277
Views
13
CrossRef citations to date
0
Altmetric
Review

Supramolecular Vesicles Based on Amphiphilic Pillar[n]arenes for Smart Nano-Drug Delivery

, , , , &
Pages 5873-5899 | Published online: 10 Aug 2020

References

  • Gießen-Jung C, von Baumgarten L. Chemotherapie-induzierte periphere Neuropathie. Dtsch Med Wochenschr. 2018;113:970–978. doi:10.1055/s-0043-12083929972842
  • Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomed. 2018;13:4727–4745. doi:10.2147/IJN.S168053
  • Minko T, Dharap SS, Pakunlu RI, Wang Y. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets. 2004;5:389–406. doi:10.2174/138945004334544315134222
  • Bildstein L, Dubernet C, Couvreur P. Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliv Rev. 2011;63:3–23. doi:10.1016/j.addr.2010.12.00521237228
  • Kratz F, Müller IA, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem. 2008;3:20–53. doi:10.1002/cmdc.20070015917963208
  • Kim K, Lee M, Park H, et al. Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc. 2006;128:3490–3491. doi:10.1021/ja057712f16536501
  • Hong MH, Zhu SJ, Jiang YY, Tang GT, Pei YY. Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Controlled Release. 2009;133:96–102. doi:10.1016/j.jconrel.2008.09.005
  • Huang XH, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–2120. doi:10.1021/ja057254a16464114
  • Basiruddin SK, Maity AR, Saha A, Jana NR. Gold-nanorod-based hybrid cellular probe with multifunctional properties. J Phys Chem C. 2011;115:19612–19620. doi:10.1021/jp206641k
  • Kuo TR, Hovhannisyan VA, Chao YC, et al. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation. J Am Chem Soc. 2010;132:14163–14171. doi:10.1021/ja105360z20857981
  • Xue YD, Bao L, Xiao XR, et al. Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem. 2011;410:92–97. doi:10.1016/j.ab.2010.11.01921094122
  • Nasongkla N, Bey E, Ren JM, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–2430. doi:10.1021/nl061412u17090068
  • Li GY, Guo L, Ma SM. Self-assembly and drug delivery behaviors of thermo-sensitive poly(t-butyl acrylate)-b-poly (N-isopropylacrylamide) micelles. J Appl Polym Sci. 2009;113:1364–1368. doi:10.1002/app.30033
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2006;24:1–16. doi:10.1007/s11095-006-9132-017109211
  • Napoli A, Valentini M, Tirelli N, MÜller M, Hubbell JA. Oxidation-responsive polymeric vesicles. Nat Mater. 2004;3:183–189. doi:10.1038/nmat108114991021
  • Feng WW, Jin M, Yang K, Pei YX, Pei ZC. Supramolecular delivery systems based on pillararenes. Chem Commun. 2018;54:13626–13640. doi:10.1039/C8CC08252A
  • Huang Y, Dong X, Liang J. Review of the application of nanovesicles and the human interstitial fluid in gastrointestinal premalignant lesion detection, diagnosis, prognosis and therapy. Int J Nanomed. 2019;14:9469–9482. doi:10.2147/IJN.S208559
  • Dickerson EB, Blackburn WH, Smith MH, et al. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer. 2010;10:10. doi:10.1186/1471-2407-10-1020064265
  • Guo CX, Yang HB, Sheng ZM, et al. Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed. 2010;49:3014–3017. doi:10.1002/anie.200906291
  • Chen K, Li ZB, Wang H, Cai WB, Chen XY. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging. 2008;35:2235–2244. doi:10.1007/s00259-008-0860-818566815
  • Yang XQ, Grailer JJ, Rowland IJ, et al. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano. 2010;4:6805–6817. doi:10.1021/nn101670k20958084
  • Shirbin SJ, Ladewig K, Fu Q, et al. Cisplatin-induced formation of biocompatible and biodegradable polypeptide-based vesicles for targeted anticancer drug delivery. Biomacromol. 2015;16:2463–2474. doi:10.1021/acs.biomac.5b00692
  • Xiao TX, Zhong WW, Xu LX, et al. Supramolecular vesicles based on pillar[n]arenes: design, construction, and applications. Org Biomol Chem. 2019;17:1336–1350. doi:10.1039/C8OB03095B30638249
  • Wang K, Guo DS, Wang X, Liu Y. Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano. 2011;5:2880–2894. doi:10.1021/nn103487321443257
  • Wang S, Yao CH, Ni MF, et al. Thermo- and oxidation-responsive supramolecular vesicles constructed from self-assembled pillar[6]arene-ferrocene based amphiphilic supramolecular diblock copolymers. Polym Chem. 2017;8:682–688. doi:10.1039/C6PY01961G
  • Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y. Para-bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc. 2008;130:5022–5023. doi:10.1021/ja711260m18357989
  • Yu GC, Zhao R, Wu D, et al. Pillar[5]arene-based amphiphilic supramolecular brush copolymer: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym Chem. 2016;7:6178–6188. doi:10.1039/C6PY01402J27795740
  • Wang Y, Du JW, Wang YX, Jin Q, Ji J. Pillar[5]arene based supramolecular prodrug micelles with pH induced aggregate behavior for intracellular drug delivery. Chem Commun. 2015;51:2999–3002. doi:10.1039/C4CC09274K
  • Liu X, Shao W, Zheng YJ, et al. GSH-responsive supramolecular nanoparticles constructed by β-D-galactose-modified pillar[5]arene and camptotecin prodrug for targeted anticancer drug delivery. Chem Commun. 2017;53:8596–8599. doi:10.1039/C7CC04932C
  • Huang X, Wu SS, Ke XK, Li XY, Du XZ. Phosphonated pillar[5]arene-valved mesoporous silica drug delivery systems. ACS Appl Mater Interfaces. 2017;9:19638–19645. doi:10.1021/acsami.7b0401528530792
  • Chi XD, Ji XF, Shao L, Huang FH. A multiresponsive amphiphilic supramolecular diblock copolymer based on pillar[10]arene/Paraquat complexation for rate-tunable controlled release. Macromol Rapid Commun. 2017;38:1600626. doi:10.1002/marc.201600626
  • Wu MX, Yan HJ, Gao J, et al. Multifunctional supramolecular materials constructed from polypyrrole@UiO-66 nanohybrids and pillararene nanovalves for targeted chemophotothermal therapy. ACS Appl Mater Interfaces. 2018;10:34655–34663. doi:10.1021/acsami.8b1375830226739
  • Xia W, Ni MF, Yao CH, et al. Responsive gel-like supramolecular network based on pillar[6]arene−ferrocenium recognition motifs in polymeric matrix. Macromol. 2015;48:4403–4409. doi:10.1021/acs.macromol.5b00889
  • Guo SW, Liang TXZ, Song YS, et al. Supramolecular polymersomes constucted from water-soluble pillar[5]arene and cationic poly(glutamamide)s and their applications for targeted anticancer drug delivery. Polym Chem. 2017;8:5718–5725. doi:10.1039/C7PY01259D
  • Jie KC, Zhou YJ, Yao Y, Huang FH. Macrocyclic amphiphiles. Chem Soc Rev. 2015;44:3568–3587. doi:10.1039/C4CS00390J25868640
  • Yao Y, Xue M, Chen JZ, Zhang MM, Huang FH. An amphiphilic pillar[5]arene: synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption. J Am Chem Soc. 2012;134:15712–15715. doi:10.1021/ja307661722967168
  • Jie KC, Zhou YJ, Yao Y, Shi BB, Huang FH. CO2-responsive pillar[5]arene-based molecular recognition in water: establishment and application in gas-controlled self-assembly and release. J Am Chem Soc. 2015;137:10472–10475. doi:10.1021/jacs.5b0596026248035
  • Yu GC, Xue M, Zhang ZB, et al. A water-soluble pillar[6]arene: synthesis, host−guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J Am Chem Soc. 2012;134:13248–13251. doi:10.1021/ja306399f22827832
  • Li PY, Yao QF, Lü BZ, Ma GP, Yin MZ. Visible light–induced supra-amphiphilic switch leads to transition from supramolecular nanosphere to nanovesicle activated by pillar[5]arene-based host–guest interaction. Macromol Rapid Commun. 2018;39:1800133. doi:10.1002/marc.201800133
  • Chi XD, Yu GC, Shao L, Chen JZ, Huang FH. A dual-thermoresponsive gemini-type supra-amphiphilic macromolecular [3] pseudorotaxane based on pillar[10]arene/paraquat cooperative complexation. J Am Chem Soc. 2016;138:3168–3174. doi:10.1021/jacs.5b1317326862921
  • Cui YH, Deng R, Li Z, et al. Pillar[5]arene pseudo[1]rotaxane-based redox-responsive supramolecular vesicles for controlled drug release. Mater Chem Front. 2019;3:1427–1432. doi:10.1039/C9QM00237E
  • Wu X, Li Y, Lin C, Hu XY, Wang LY. GSH- and pH-responsive drug delivery system constructed by water-soluble pillar[5]arene and lysine derivative for controllable drug release. Chem Commun. 2015;51:6832–6835. doi:10.1039/C5CC01393C
  • Shao W, Liu X, Sun GP, Hu XY, Zhu JJ, Wang LY. Construction of drug-drug conjugate supramolecular nanocarriers based on water-soluble pillar[6]arene for combination chemotherapy. Chem Commun. 2018;54:9462–9465. doi:10.1039/C8CC05180A
  • Yu GC, Yu W, Shao L, et al. Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy. Adv Funct Mater. 2016;26:8999–9008. doi:10.1002/adfm.201601770
  • Xiao TX, Qi LJ, Zhong WW, et al. Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles. Mater Chem Front. 2019;3:1973–1993. doi:10.1039/C9QM00428A
  • Zhang HC, Liu ZN, Zhao YL. Pillararene-based self-assembled amphiphiles. Chem Soc Rev. 2018;47:5491–5528. doi:10.1039/C8CS00037A29869655
  • Yu GC, Jie KC, Huang FH. Supramolecular amphiphiles based on host−guest molecular recognition motifs. Chem Rev. 2015;115:7240–7303. doi:10.1021/cr500531525716119
  • Yu GC, Ma YJ, Han CY, et al. A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J Am Chem Soc. 2013;135:10310–10313. doi:10.1021/ja405237q23795751
  • Shang K, Wang Y, Lu YC, Pei ZC, Pei YX. Dual-targeted supramolecular vesicles based on the complex of galactose capped pillar[5]arene and triphenylphosphonium derivative for drug delivery. Isr J Chem. 2018;58:1205–1209. doi:10.1002/ijch.201800080
  • Zhou YJ, Jie KC, Huang FH. A redox-responsive selenium-containing pillar[5]arene-based macrocyclic amphiphile: synthesis, controllable self-assembly in water, and application in controlled release. Chem Commun. 2017;53:8364–8367. doi:10.1039/C7CC04779G
  • Zhou YJ, Jie KC, Huang FH. A dual redox-responsive supramolecular amphiphile fabricated by selenium-containing pillar[6]arene-based molecular recognition. Chem Commun. 2018;54:12856–12859. doi:10.1039/C8CC06406G
  • Ogoshi T, Kida K, Yamagishi TA. Photoreversible switching of the lower critical solution temperature in a photoresponsive host−guest system of pillar[6]arene with triethylene oxide substituents and an azobenzene derivative. J Am Chem Soc. 2012;134:20146–20150. doi:10.1021/ja309103323163776
  • Zhang HC, Ma X, Nguyen KT, Zhao YL. Biocompatible pillararene-assembly-based carriers for dual bioimaging. ACS Nano. 2013;7:7853–7863. doi:10.1002/chem.20180131523927086
  • Chi XD, Ji XF, Xia DY, Huang FH. A dual-responsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillar[7]arene and an azobenzene-containing random copolymer. J Am Chem Soc. 2015;137:1440–1443. doi:10.1021/ja512978n25590459
  • Chi XD, Yu GC, Ji XF, et al. Redox-responsive amphiphilic macromolecular [2] pseudorotaxane constructed from a water-soluble pillar[5]arene and a paraquat-containing homopolymer. ACS Macro Lett. 2015;4:996–999. doi:10.1021/acsmacrolett.5b00525
  • Li MY, Wang SJ, Xu J, Xu SH, Liu HL. pH/Redox-controlled interaction between lipid membranes and peptide derivative with a “Helmet”. J Phys Chem B. 2019;123:6784–6791. doi:10.1021/acs.jpcb.9b0536731306021
  • Yang K, Pei YX, Wen J, Pei ZC. Recent advances in pillar[n]arenes: synthesis and application based on host-guest interactions. Chem Commun. 2016;52:9316–9326. doi:10.1039/C6CC03641D
  • Kakuta T, Yamagishi TA, Ogoshi T. Stimuli-responsive supramolecular assemblies constructed from pillar[n]arenes. Acc Chem Res. 2018;51:1656–1666. doi:10.1021/acs.accounts.8b0015729889488
  • Yu GC, Zhou XY, Zhang ZB, et al. Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc. 2012;134:19489–19497. doi:10.1021/ja309990523130568
  • Li ZT, Yang J, Yu GC, et al. Water-soluble pillar[7]arene: synthesis, pH-controlled complexation with paraquat, and application in constructing supramolecular vesicles. Org Lett. 2014;16:2066–2069. doi:10.1021/ol500686r24666345
  • Shi BB, Jie KC, Zhou YJ, et al. Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water. J Am Chem Soc. 2016;138:80–83. doi:10.1021/jacs.5b1167626699758
  • Zhao R, Zhou YJ, Jie KC, et al. Fluorescent supramolecular polymersomes based on pillararene/paraquat molecular recognition for ph-controlled drug release. Chinese J Polym Sci. 2020;38:1–8. doi:10.1007/s10118-019-2305-1
  • Duan QP, Cao Y, Li Y, et al. pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J Am Chem Soc. 2013;135:10542–10549. doi:10.1021/ja405014r23795864
  • Hu XY, Jia KK, Cao Y, et al. Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery. Chem Eur J. 2015;21:1208–1220. doi:10.1002/chem.20140509525370941
  • Cao Y, Hu XY, Li Y, et al. Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6]arene and SAINT complexation for controllable drug release. J Am Chem Soc. 2014;136:10762–10769. doi:10.1021/ja505344t25033305
  • Meng LB, Zhang WY, Li DQ, et al. pH-responsive supramolecular vesicles assembled by water-soluble pillar[5]arene and BODIPY photosensitizer for chemo-photodynamic dual therapy. Chem Commun. 2015;51:14381–14384. doi:10.1039/C5CC05785J
  • Gao L, Wang TT, Jia KK, et al. Glucose-responsive supramolecular vesicles based on water-soluble pillar[5]arene and pyridylboronic acid derivative for controlled insulin delivery. Chem Eur J. 2017;23:6605–6614. doi:10.1002/chem.20170034528328176
  • Liu X, Jia KK, Wang YC, et al. A dual-responsive bola-type supra-amphiphile constructed from water-soluble pillar[5]arene and naphthalimide-containing amphiphile for intracellular drug delivery. ACS Appl Mater Interfaces. 2017;9:4843–4850. doi:10.1021/acsami.7b0064328097872
  • Yang K, Yang K, Chao S, et al. A supramolecular hybrid material constructed from pillar[6]arene-based host-guest complexation and ZIF-8 for targeted drug delivery. Chem Commun. 2018;54:9817–9820. doi:10.1039/C8CC05665J
  • Chang YC, Hou CX, Ren JL, et al. Multifunctional supramolecular vesicles based on complex of ferrocenecarboxylic acid capped pillar[5]arene and galactose derivative for targeted drug delivery. Chem Commun. 2016;52:9578–9581. doi:10.1039/C6CC03637F
  • Xia DY, Shangguan LQ, Xue M, Shi BB. Dual-responsive self-assembly of a bola-type supra-amphiphile constructed from a new pillar[6]arene-based recognition motif in water and its application in controlled release. New J Chem. 2016;40:9890–9894. doi:10.1039/C6NJ02269C
  • Wheate NJ, Dickson KA, Kim RR, et al. Host-guest complexes of carboxylated pillar[n]arenes with drugs. J Pharm Sci. 2016;105:3615–3625. doi:10.1016/j.xphs.2016.09.00827776769
  • Jiang L, Huang X, Chen D, et al. Supramolecular vesicles coassembled from disulfide-linked benzimidazolium amphiphiles and carboxylate-substituted pillar-[6]arenes that are responsive to five stimuli. Angew Chem Int Ed. 2017;56:2655–2659. doi:10.1002/anie.201611973
  • Wang Q, Tian L, Xu JZ, et al. Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. Chem Commun. 2018;54:10328–10331. doi:10.1039/C8CC05560B
  • Zhou JY, Xu HA, Tong ZZ, Yang YH, Jiang GH. Photo/pH-controlled host–guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the “compound vesicles” for controlled drug delivery. Mater Sci Eng. 2018;89:237–244. doi:10.1016/j.msec.2018.04.010
  • Zhong JX, Tang QJ, Ju YS, et al. Redox and pH responsive polymeric vesicles constructed from a water-soluble pillar[5]arene and a paraquat-containing block copolymer for rate-tunable controlled release. J Biomater Sci, Polym Ed. 2019;30:202–214. doi:10.1080/09205063.2018.156181430587090
  • Zhou YJ, Li ER, Zhao R, Jie KC. CO2-enhanced bola-type supramolecular amphiphile constructed from pillar[5]arene-based host−guest recognition. Org Lett. 2018;20:4888–4892. doi:10.1021/acs.orglett.8b0203330048143
  • Hu XY, Liu X, Zhang WY, et al. Controllable construction of biocompatible supramolecular micelles and vesicles by water-soluble phosphate pillar[5,6]arenes for selective anti-cancer drug delivery. Chem Mater. 2016;28:3778–3788. doi:10.1021/acs.chemmater.6b00691
  • Chang YC, Chen JY, Yang JP, et al. Targeting the cell membrane by charge-reversal amphiphilic pillar[5]arene for the selective killing of cancer cells. ACS Appl Mater Interfaces. 2019;11:38497–38502. doi:10.1021/acsami.9b1349231556585
  • Jin XY, Song N, Wang X, et al. Monosulfonicpillar[5]arene: synthesis, characterization, and complexation with tetraphenylethene for aggregation-induced emission. Sci Rep. 2018;8:4035. doi:10.1038/s41598-018-22446-y29507324
  • Wang X, Lou XY, Jin XY, Liang F, Yang YW. A binary supramolecular assembly with intense fluorescence emission, high pH stability, and cation selectivity: supramolecular assembly-induced emission materials. Research. 2019;2019:1454562.
  • Ogoshi T, Ueshima N, Yamagishi TA. An amphiphilic pillar[5]arene as efficient and substrate-selective phase-transfer catalyst. Org Lett. 2013;15:3742–3745. doi:10.1021/ol401654623815706
  • Chen W, Zhang YY, Li J, et al. Synthesis of a cationic water-soluble pillar[6]arene and its effective complexation towards naphthalenesulfonate guests. Chem Commun. 2013;49:7956–7958. doi:10.1039/c3cc44328k
  • Ma YJ, Ji XF, Xiang F, et al. A cationic water-soluble pillar[5]arene: synthesis and host–guest complexation with sodium 1-octanesulfonate. Chem Commun. 2011;47:12340–12342. doi:10.1039/c1cc15660h
  • Yao Y, Xue M, Chi XD, et al. A new water-soluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles. Chem Commun. 2012;48:6505–6507. doi:10.1039/c2cc31962d
  • Hu XY, Ehlers M, Wang TT, et al. Formation of twisted B-sheet tapes from a self-complementary peptide based on novel pillararene-GCP host-guest interaction with gene transfection properties. Chem Eur J. 2018;24:9754–9759.29770977
  • Hu XY, Gao L, Mosel S, et al. From supramolecular vesicles to micelles: controllable construction of tumor-targeting nanocarriers based on host–guest interaction between a pillar[5]arene-based prodrug and a RGD-sulfonate guest. Small. 2018;14:e1803952. doi:10.1002/smll.20180395230456872
  • Chang YC, Yang K, Wei P, et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew Chem Int Ed. 2014;53:13126–13130. doi:10.1002/anie.201407272
  • Yang K, Chang YC, Wen J, et al. Supramolecular vesicles based on complex of Trp-modified pillar[5]arene and galactose derivative for synergistic and targeted drug delivery. Chem Mater. 2016;28:1990–1993. doi:10.1021/acs.chemmater.6b00696
  • Lu YC, Hou CX, Ren JL, et al. A multifunctional supramolecular vesicle based on complex of cystamine dihydrochloride capped pillar[5]arene and galactose derivative for targeted drug delivery. Int J Nanomed. 2019;14:3525–3532. doi:10.2147/IJN.S191256
  • Zuo MZ, Qian WR, Xu ZQ, et al. Multiresponsive supramolecular theranostic nanoplatform based on pillar[5]arene and Diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery. Small. 2018;14:e1801942. doi:10.1002/smll.20180194230073791
  • Wang Q, Zhang P, Xu JZ, et al. NIR-absorbing dye functionalized supramolecular vesicles for chemo-photothermal synergistic therapy. ACS Appl Bio Mater. 2018;1:70–78. doi:10.1021/acsabm.8b00014