270
Views
27
CrossRef citations to date
0
Altmetric
Original Research

Efficacy and Molecular Effects of a Reduced Graphene Oxide/Fe3O4 Nanocomposite in Photothermal Therapy Against Cancer

, ORCID Icon, ORCID Icon &
Pages 6421-6432 | Published online: 25 Aug 2020

References

  • IARC Global Cancer Observatory. Press release N° 263; 2018 Available from: http://gco.iarc.fr/. Accessed 1021, 2019
  • Lepisto AJ, Mckolanis JR, Finn OJ. Chapter 10 – cancer Immunotherapy: challenges and opportunities In: Cancer Immunotherapy; 2007:167–181. doi:10.1016/B978-012372551-6/50074-2
  • Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37–50. doi:10.1038/nrd193016485345
  • Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CMP. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18(5):282–289. doi:10.1016/j.drudis.2012.10.00223064097
  • Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem. 2009;19(18):2710. doi:10.1039/b821416f
  • Pérez-Hernández M, Del Pino P, Mitchell SG, et al. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano. 2015;9(1):52–61. doi:10.1021/nn505468v25493329
  • Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Alexandria J Med. 2011;47(1):1–9. doi:10.1016/j.ajme.2011.01.001
  • Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials. 2013;34(20):4786–4793. doi:10.1016/j.biomaterials.2013.03.02323557860
  • Yang L, Tseng YT, Suo G, et al. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Appl Mater Interfaces. 2015;7(9):5097–5106. doi:10.1021/am508117e25705789
  • Lal S, Clare SE, Halas NJ. Photothermal therapy: impending clinical impact. Acc Chem Res. 2008;41(12):1842–1851. doi:10.1021/ar800150g19053240
  • Liu Y, Li N, Li Y, Li H, Wang X. HSP70 is associated with endothelial activation in placental vascular diseases. Mol Med. 2008;14(9–10):1. doi:10.2119/2008-00009.Liu
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. Vol. 1 Fifth ed. Anderson M, Granum S eds.Garland Science, Taylor & Francis Group; 2008. doi:10.1017/CBO9781107415324.004
  • Geim AK, Novoselov KS, The rise of graphene. Nat Mater. 2007;6(3):183–191. doi:10.1038/nmat184917330084
  • Lotya M, Hernandez Y, King PJ, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc. 2009;131(11):3611–3620. doi:10.1021/ja807449u19227978
  • Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res. 2013;46(10):2329–2339. doi:10.1021/ar300203n23480816
  • Coleman JN. Liquid exfoliation of defect-free graphene. Acc Chem Res. 2012;6(1):14–22. doi:10.1021/ar300009f
  • Paton KR, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater. 2014;13(6):624–630. doi:10.1038/nmat394424747780
  • Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339. doi:10.1021/ja01539a017
  • Sun Z, James DK, Tour JM. Graphene chemistry: synthesis and manipulation. J Phys Chem Lett. 2011;2(19):2425–2432. doi:10.1021/jz201000a
  • Jahanbani S, Benvidi A. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite. Mater Sci Eng C. 2016;68:1–8. doi:10.1016/j.msec.2016.05.056
  • Gollavelli G, Chang CC, Ling YC. Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng. 2013;1(5):462–472. doi:10.1021/sc300112z
  • Ma X, Tao H, Yang K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012;5(3):199–212. doi:10.1007/s12274-012-0200-y
  • Tian T, Shi X, Cheng L, et al. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces. 2014;6(11):8542–8548. doi:10.1021/am502291424806506
  • Amjadi M, Manzoori JL, Hallaj T. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J Lumin. 2014;153:73–78. doi:10.1016/j.jlumin.2014.03.020
  • Chen ML, He YJ, Chen XW, Wang JH. Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug Chem. 2013;24(3):387–397. doi:10.1021/bc300480923425155
  • Patil AJ, Vickery JL, Scott TB, Mann S. Aqueous stabilization and self-assembly of craphene sheets into layered bio-nanocomposites using DNA. Adv Mater. 2009;21(31):3159–3164. doi:10.1002/adma.200803633
  • Paul-Samojedny M, Kokocińska D, Samojedny A, et al. Expression of cell survival/death genes: bcl-2 and bax at the rate of colon cancer prognosis. Biochim Biophys Acta Mol Basis Dis. 2005;1741(1):25–29. doi:10.1016/j.bbadis.2004.11.021
  • Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203–212. doi:10.1007/s12274-008-8021-820216934
  • Chandra V, Park J, Chun Y, Lee JW, Hwang I, Kim KS. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4(7):3979–3986. doi:10.1021/nn100889720552997
  • Haimes J, Kelley M Demonstration of a ΔΔCq calculation method to compute relative gene expression from qPCR data. GE Healthc; 2010 Available from: http://dharmacon.gelifesciences.com/uploadedfiles/resources/delta-cq-solaris-technote.pdf.
  • Ramakrishnan Minitha C, Suresh R, Kumar Maity U, et al. Magnetite nanoparticle decorated reduced graphene oxide composite as an efficient and recoverable adsorbent for the removal of cesium and strontium ions. Ind Eng Chem Res. 2018;57:58. doi:10.1021/acs.iecr.7b05340
  • Liu Y, Chen Z, Zhang Y, et al. Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe 2 O 4/reduced graphene oxide porous nanocomposites. ACS Appl Mater Interfaces. 2018;10(16):13860–13868. doi:10.1021/acsami.8b0213729589899
  • Gurbani N, Han C-P, Marumoto K, et al. Biogenic reduction of graphene oxide: an efficient superparamagnetic material for photocatalytic hydrogen production. ACS Appl Energy Mater. 2018;1(11):5907–5918. doi:10.1021/acsaem.8b00552
  • Jabbar A, Yasin G, Khan WQ, et al. Electrochemical deposition of nickel graphene composite coatings effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv. 2017;7(49):31100–31109. doi:10.1039/c6ra28755g
  • Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18). doi:10.1103/PhysRevLett.97.187401.
  • Wall M. The Raman spectroscopy of graphene and the determination of layer thickness. Thermo Sci. 2011;5.
  • Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Phys Rep. 2009;473(5–6):51–87. doi:10.1016/j.physrep.2009.02.003
  • Zong M, Huang Y, Zhang N. Reduced graphene oxide-CoFe2O4 composite: synthesis and electromagnetic absorption properties. Appl Surf Sci. 2015;345:272–278. doi:10.1016/j.apsusc.2015.03.203
  • Liu Y, Guo H, Sun K, Jiang J. Magnetic CoOx@C-reduced graphene oxide composite with catalytic activity towards hydrogen generation. Int J Hydrogen Energy. 2019;44(52):28163–28172. doi:10.1016/j.ijhydene.2019.09.034
  • Wahajuddin AS. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445–3471. doi:10.2147/IJN.S3032022848170
  • Szymczyk A, Paszkiewicz S, Typek J, et al. Magnetic properties of poly(trimethylene terephthalate‐block‐poly(tetramethylene oxide) copolymer nanocomposites reinforced by graphene oxide–Fe3O4 hybrid nanoparticles. Phys Status Solidi. 2019;216(23):1900402. doi:10.1002/pssa.201900402
  • Vinodhkumar G, Wilson J, Inbanathan SSR, Potheher IV, Ashokkumar M, Peter AC. Solvothermal synthesis of magnetically separable reduced graphene oxide/Fe3O4 hybrid nanocomposites with enhanced photocatalytic properties. Phys Rev B Condens Matter. 2020;580:411752. doi:10.1016/j.physb.2019.411752
  • Hakimi M, Alimard P, Yousefi M. Green synthesis of reduced graphene oxide/Sr2CuMgFe 28O46 nanocomposite with tunable magnetic properties. Ceram Int. 2014;40(8PART A):11957–11961. doi:10.1016/j.ceramint.2014.04.032
  • Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal. 2014;22(1):105–115. doi:10.1016/j.jfda.2014.01.00924673908
  • Liao KH, Lin YS, MacOsko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces. 2011;3(7):2607–2615. doi:10.1021/am200428v21650218
  • Jiao G, He X, Li X, et al. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv. 2015;5(66):53240–53244. doi:10.1039/C5RA08958A
  • Li R, Guiney LM, Chang CH, et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano. 2018;12(2):1390–1402. doi:10.1021/acsnano.7b0773729328670
  • Das S, Singh S, Singh V, et al. Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part Part Syst Char. 2013;30(2):148–157. doi:10.1002/ppsc.201200066
  • Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics. 2010;4(9):611–622. doi:10.1038/nphoton.2010.186
  • Gurunathan S, Han JW, Eppakayala V, Kim JH. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids Surf B Biointerfaces. 2013;105:58–66. doi:10.1016/j.colsurfb.2012.12.03623352948
  • Lingaraju K, Raja Naika H, Nagaraju G, Nagabhushana H. Biocompatible synthesis of reduced graphene oxide from Euphorbia heterophylla (L.) and their in-vitro cytotoxicity against human cancer cell lines. Biotechnol Rep. 2019;24:e00376. doi:10.1016/j.btre.2019.e00376
  • Luo L, Xu L, Zhao H. Biosynthesis of reduced graphene oxide and its in-vitro cytotoxicity against cervical cancer (HeLa) cell lines. Mater Sci Eng C. 2017;78:198–202. doi:10.1016/j.msec.2017.04.031
  • Li Y, Yuan H, von Dem Bussche A, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci U S A. 2013;110(30):12295–12300. doi:10.1073/pnas.122227611023840061
  • Duan G, Zhang Y, Luan B, et al. Graphene-induced pore formation on cell membranes. Sci Rep. 2017;7. doi:10.1038/srep42767
  • Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: “three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis Photodyn Ther. 2018;25:504–514. doi:10.1016/j.pdpdt.2018.10.02130385298
  • Xie M, Zhang F, Peng H, et al. Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surf B Biointerfaces. 2019;176:462–470. doi:10.1016/j.colsurfb.2019.01.02830682619
  • Geng B, Yang D, Pan D, et al. NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities. Carbon. 2018;134:153–162. doi:10.1016/j.carbon.2018.03.084
  • Zhang F, Xie M, Zhao Y, et al. Chitosan and dextran stabilized GO-iron oxide nanosheets with high dispersibility for chemotherapy and photothermal ablation. Ceram Int. 2019;45(5):5996–6003. doi:10.1016/j.ceramint.2018.12.070
  • Chang X, Zhang Y, Xu P, Zhang M, Wu H, Yang S. Graphene oxide/MnWO 4 nanocomposite for magnetic resonance/photoacoustic dual-model imaging and tumor photothermo-chemotherapy. Carbon. 2018;138:397–409. doi:10.1016/j.carbon.2018.07.058
  • Zhen SJ, Wang TT, Liu YX, Wu ZL, Zou HY, Huang CZ. Reduced graphene oxide coated Cu2−xSe nanoparticles for targeted chemo-photothermal therapy. J Photochem Photobiol B Biol. 2018;180:9–16. doi:10.1016/j.jphotobiol.2018.01.020
  • Su Y, Wang N, Liu B, et al. A phototheranostic nanoparticle for cancer therapy fabricated by BODIPY and graphene to realize photo-chemo synergistic therapy and fluorescence/photothermal imaging. Dyes Pigm. 2020;177:108262. doi:10.1016/j.dyepig.2020.108262
  • Liu J, Yuan X, Deng L, et al. Graphene oxide activated by 980 nm laser for cascading two-photon photodynamic therapy and photothermal therapy against breast cancer. Appl Mater Today. 2020;20:100665. doi:10.1016/j.apmt.2020.100665
  • Liu H, Li C, Qian Y, et al. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials. 2020;232:119700. doi:10.1016/j.biomaterials.2019.11970031881379
  • Chang X, Zhang M, Wang C, Zhang J, Wu H, Yang S. Graphene oxide/BaHoF5/PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. Carbon. 2020;158:372–385. doi:10.1016/j.carbon.2019.10.105
  • Marangon I, Ménard-Moyon C, Silva AKA, Bianco A, Luciani N, Gazeau F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon. 2016;97:110–123. doi:10.1016/j.carbon.2015.08.023
  • Salaheldin TA, Loutfy SA, Ramadan MA, Youssef T, Mousa SA. Ir-enhanced photothermal therapeutic effect of graphene magnetite nanocomposite on human liver cancer HepG2 cell model. Int J Nanomedicine. 2019;14:4397–4412. doi:10.2147/IJN.S19625631417251
  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol. 2007;81(1):15–27. doi:10.1189/jlb.030616716931602
  • Rizwan Younis M, Bing An R, Yin Y-C, Wang S, Ye D, Xia X-H. Plasmonic nanohybrid with high photothermal conversion efficiency for simultaneously effective antibacterial/anticancer photothermal therapy. ACS Appl Bio Mater. 2019;2(9):3942–3953. doi:10.1021/acsabm.9b00521
  • Tang X, Tan L, Shi K, et al. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharm Sin B. 2018;8(4):587–601. doi:10.1016/j.apsb.2018.05.01130109183
  • Gurunathan S, Kang M-H, Jeyaraj M, Kim J-H. Differential immunomodulatory effect of graphene oxide and vanillin-functionalized graphene oxide nanoparticles in human acute monocytic leukemia cell line (THP-1). Int J Mol Sci. 2019;20(2):247. doi:10.3390/ijms20020247
  • Choi YJ, Gurunathan S, Kim JH. Graphene oxide-silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): a novel approach for cancer therapy. Int J Mol Sci. 2018;19(710):710. doi:10.3390/ijms19030710
  • Adams JM, Cory S. The Bcl-2-regulated apoptosis switch: mechanism and therapeutic potential. Curr Opin Immunol. 2009;19(5):488–496. doi:10.1016/j.coi.2007.05.004.The
  • Thapa RK, Byeon JH, Choi HG, Yong CS, Kim JO. PEGylated lipid bilayer-wrapped nano-graphene oxides for synergistic co-delivery of doxorubicin and rapamycin to prevent drug resistance in cancers. Nanotechnology. 2017;28(29):295101. doi:10.1088/1361-6528/aa799728614069
  • Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, Pellecchia M. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis. 2010;1(5):e40. doi:10.1038/cddis.2010.1821364647