1,076
Views
70
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5445-5458 | Published online: 30 Jul 2020

References

  • Krishnaiah Y, Satyanarayana V, Kumar BD, Karthikeyan R. In vitro drug release studies on guar gum-based colon targeted oral drug delivery systems of 5-fluorouracil. Eur J Pharm Sci. 2002;16(3):185–192. doi:10.1016/S0928-0987(02)00081-712128173
  • Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Observations in simultaneous microencapsulation of 5-fluorouracil and leucovorin for combined pH-dependent release. Eur J Pharm Biopharm. 2005;59(2):367–371. doi:10.1016/j.ejpb.2004.09.00515661510
  • Hosseini M, Farjadian F, Makhlouf ASH. Smart Stimuli-Responsive Nano-Sized Hosts for Drug Delivery. Industrial Applications for Intelligent Polymers and Coatings. Cham: Springer; 2016:1–26.
  • Farjadian F, Roointan A, Mohammadi-Samani S, Hosseini M. Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem Eng. 2019;359:684–705. doi:10.1016/j.cej.2018.11.156
  • Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93–126. doi:10.2217/nnm-2018-012030451076
  • Farjadian F, Moghoofei M, Mirkiani S, et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol Adv. 2018;36(4):968–985. doi:10.1016/j.biotechadv.2018.02.01629499341
  • Roointan A, Farzanfar J, Mohammadi-Samani S, Behzad-Behbahani A, Farjadian F. Smart pH responsive drug delivery system based on poly (HEMA-co-DMAEMA) nanohydrogel. Int J Pharm. 2018;552(1–2):301–311. doi:10.1016/j.ijpharm.2018.10.00130291961
  • Farjadian F, Rezaeifard S, Naeimi M, et al. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam). Int J Nanomedicine. 2019;14:6901. doi:10.2147/IJN.S21446731564860
  • Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330. doi:10.1038/nrc107412724731
  • Sun X, Liu C, Omer A, et al. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int J Biol Macromol. 2019;128:468–479. doi:10.1016/j.ijbiomac.2019.01.14030695723
  • Krishnaiah Y, Satyanarayana V, Kumar BD, Karthikeyan R, Bhaskar P. In vivo pharmacokinetics in human volunteers: oral administered guar gum-based colon-targeted 5-fluorouracil tablets. Eur J Pharm Sci. 2003;19(5):355–362. doi:10.1016/S0928-0987(03)00139-812907286
  • Burki TK. TAS-102 in metastatic colorectal cancer. Lancet Oncol. 2018;19(1):e18. doi:10.1016/S1470-2045(17)30927-029249306
  • Fournier E, Passirani C, Colin N, Breton P, Sagodira S, Benoit J-P. Development of novel 5-FU-loaded poly (methylidene malonate 2.1. 2)-based microspheres for the treatment of brain cancers. Eur J Pharm Biopharm. 2004;57(2):189–197. doi:10.1016/S0939-6411(03)00146-215018974
  • Minko T, Dharap S, Pakunlu R, Wang Y. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets. 2004;5(4):389–406. doi:10.2174/138945004334544315134222
  • Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev. 2004;56(4):491–509. doi:10.1016/j.addr.2003.10.01714969755
  • Wohlhueter RM, McIvor RS, Plagemann PG. Facilitated transport of uracil and 5‐fluorouracil, and permeation of orotic acid into cultured mammalian cells. J Cell Physiol. 1980;104(3):309–319. doi:10.1002/jcp.10410403057419607
  • Okumura K, Shiomi H, Mekata E, et al. Correlation between chemosensitivity and mRNA expression level of 5-fluorouracil-related metabolic enzymes during liver metastasis of colorectal cancer. Oncol Rep. 2006;15(4):875–882.16525674
  • Chen L, She X, Wang T, et al. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles. Nanoscale. 2015;7(33):14080–14092. doi:10.1039/C5NR03527A26242620
  • Ma Z, Ma R, Wang X, Gao J, Zheng Y, Sun Z. Enzyme and PH responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. Eur Polym J. 2019;118:64–70. doi:10.1016/j.eurpolymj.2019.05.017
  • Kaur V, Goyal AK, Ghosh G, Si SC, Rath G. Development and characterization of pellets for targeted delivery of 5-fluorouracil and phytic acid for treatment of colon cancer in wistar rat. Heliyon. 2020;6(1):e03125. doi:10.1016/j.heliyon.2019.e0312532042938
  • Hu X, Jing X. Biodegradable amphiphilic polymer–drug conjugate micelles. Expert Opin Drug Deliv. 2009;6(10):1079–1090. doi:10.1517/1742524090315891719645633
  • Hu X, Li J, Lin W, Huang Y, Jing X, Xie Z. Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy. RSC Adv. 2014;4(72):38405–38411. doi:10.1039/C4RA06270A
  • Ogawara K-I, Yoshizawa Y, Un K, Araki T, Kimura T, Higaki K. Nanoparticle-based passive drug targeting to tumors: considerations and implications for optimization. Biol Pharm Bull. 2013;36(5):698–702. doi:10.1248/bpb.b13-0001523649328
  • Jabr-Milane L, van Vlerken L, Devalapally H, et al. Multi-functional nanocarriers for targeted delivery of drugs and genes. J Control Release. 2008;130(2):121–128. doi:10.1016/j.jconrel.2008.04.01618538887
  • Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 2001;8(1):28–40. doi:10.1038/sj.gt.330135111402299
  • Sheikhsaran F, Sadeghpour H, Khalvati B, Entezar-Almahdi E, Dehshahri A. Tetraiodothyroacetic acid-conjugated polyethylenimine for integrin receptor mediated delivery of the plasmid encoding IL-12 gene. Colloids Surf B Biointerfaces. 2017;150:426–436. doi:10.1016/j.colsurfb.2016.11.00827847224
  • Sadeghpour H, Khalvati B, Entezar-Almahdi E, et al. Double domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. Sci Rep. 2018;8(1):1–12. doi:10.1038/s41598-018-25277-z29311619
  • Benns JM, Mahato RI, Kim SW. Optimization of factors influencing the transfection efficiency of folate–PEG–folate-graft-polyethylenimine. J Control Release. 2002;79(1–3):255–269. doi:10.1016/S0168-3659(01)00513-211853936
  • Mohammadi-Samani S, Zojaji S, Entezar-Almahdi E. Piroxicam loaded solid lipid nanoparticles for topical delivery: preparation, characterization and in vitro permeation assessment. J Drug Deliv Sci Technol. 2018;47:427–433. doi:10.1016/j.jddst.2018.07.015
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288. doi:10.4103/1735-5362.23515630065762
  • Mohammadi-Samani S, Salehi H, Entezar-Almahdi E, Masjedi M. Preparation and characterization of sumatriptan loaded solid lipid nanoparticles for transdermal delivery. J Drug Deliv Sci Technol. 2020;57:101719. doi:10.1016/j.jddst.2020.101719
  • Khallaf RA, Salem HF, Abdelbary A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv. 2016;23(9):3452–3460. doi:10.1080/10717544.2016.119449827240935
  • Gu C, Le V, Lang M, Liu J. Preparation of polysaccharide derivates chitosan-graft-poly (ɛ-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery. Colloids Surf B Biointerfaces. 2014;116:745–750. doi:10.1016/j.colsurfb.2014.01.02624529474
  • Horo H, Das S, Mandal B, Kundu LM. Development of a photoresponsive chitosan conjugated prodrug nano-carrier for controlled delivery of antitumor drug 5-fluorouracil. Int J Biol Macromol. 2019;121:1070–1076. doi:10.1016/j.ijbiomac.2018.10.09530342947
  • Zheng Y, Yang W, Wang C, et al. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm. 2007;67(3):621–631. doi:10.1016/j.ejpb.2007.04.00717533123
  • Akinyelu J, Singh M. Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. Appl Nanosci. 2018;1–11.
  • Yang -H-H, Zhang S-Q, Tan F, Zhuang Z-X, Wang X-R. Surface molecularly imprinted nanowires for biorecognition. J Am Chem Soc. 2005;127(5):1378–1379. doi:10.1021/ja046762215686362
  • Matsui J, Higashi M, Takeuchi T. Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center. J Am Chem Soc. 2000;122(21):5218–5219.
  • Zheng X-F, Lian Q, Yang H, Wang X. Surface molecularly imprinted polymer of chitosan grafted poly(methyl methacrylate) for 5-fluorouracil and controlled release. Sci Rep. 2016;6(1):21409. doi:10.1038/srep2140926892676
  • Li L, Chen L, Zhang H, Yang Y, Liu X, Chen Y. Temperature and magnetism bi-responsive molecularly imprinted polymers: preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil. Mater Sci Eng C. 2016;61:158–168. doi:10.1016/j.msec.2015.12.027
  • Lu XY, Zhang Y, Wang L. Preparation and in vitro drug‐release behavior of 5‐fluorouracil‐loaded poly (hydroxybutyrate‐co‐hydroxyhexanoate) nanoparticles and microparticles. J Appl Polym Sci. 2010;116(5):2944–2950.
  • Wang Y, Li P, Chen L, Gao W, Zeng F, Kong LX. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles. Drug Deliv. 2015;22(2):191–198. doi:10.3109/10717544.2013.87560324437926
  • Maghsoudi A, Shojaosadati SA, Farahani EV. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS PharmSciTech. 2008;9(4):1092–1096. doi:10.1208/s12249-008-9146-518850275
  • Mohiyuddin S, Naqvi S, Packirisamy G. Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles. Beilstein J Nanotechnol. 2018;9(1):2499–2515. doi:10.3762/bjnano.9.23330345213
  • Bhadra D, Bhadra S, Jain S, Jain N. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003;257(1–2):111–124. doi:10.1016/S0378-5173(03)00132-712711167
  • Jin Y, Ren X, Wang W, et al. A 5-fluorouracil-loaded pH-responsive dendrimer nanocarrier for tumor targeting. Int J Pharm. 2011;420(2):378–384. doi:10.1016/j.ijpharm.2011.08.05321925254
  • Mattos A, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM. Polymeric nanoparticles for oral delivery of 5-fluorouracil: formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci. 2016;84:83–91. doi:10.1016/j.ejps.2016.01.01226775869
  • Hariharan MS, Sivaraj R, Ponsubha S, Jagadeesh R, Enoch IVMV. 5-Fluorouracil-loaded β-cyclodextrin-carrying polymeric poly(methylmethacrylate)-coated samarium ferrite nanoparticles and their anticancer activity. J Mater Sci. 2018.
  • Kasprzak A, Gunka K, Fronczak M, Bystrzejewski M, Poplawska M. Folic acid-navigated and β-cyclodextrin-decorated carbon-encapsulated iron nanoparticles as the nanotheranostic platform for controlled release of 5-fluorouracil. ChemistrySelect. 2018;3(38):10821–10830. doi:10.1002/slct.201802318
  • Simoes S, Fonseca C, de Lima MP, Düzgünes N. Ph-Sensitive Liposomes: From Biophysics to Therapeutic Applications. Trigger Sensitive Assemblies and Particulates. London: Citus Books; 2005.
  • Storm G, Koppenhagen F, Heeremans A, Vingerhoeds M, Woodle MC, Crommelin DJ. Novel developments in liposomal delivery of peptides and proteins. J Control Release. 1995;36(1–2):19–24. doi:10.1016/0168-3659(95)00047-C
  • Soni V, Kohli D, Jain S. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target. 2008;16(1):73–78. doi:10.1080/1061186070172538118172823
  • Handali S, Moghimipour E, Kouchak M, et al. New folate receptor targeted nano liposomes for delivery of 5-fluorouracil to cancer cells: strong implication for enhanced potency and safety. Life Sci. 2019;227:39–50. doi:10.1016/j.lfs.2019.04.03031002921
  • Jin Y, Yang F, Du L. Nanoassemblies containing a fluorouracil/zidovudine glyceryl prodrug with phospholipase A2-triggered drug release for cancer treatment. Colloids Surf B Biointerfaces. 2013;112:421–428. doi:10.1016/j.colsurfb.2013.08.02124036626
  • Entezar-Almahdi E, Morowvat MH. Pharmacokinetic aspects of carbon nanotubes: improving outcomes of functionalization. Curr Nanosci. 2019;15(5):454–459. doi:10.2174/1573413715666181204113525
  • González-Lavado E, Valdivia L, García-Castaño A, et al. Multi-walled carbon nanotubes complement the anti-tumoral effect of 5-fluorouracil. Oncotarget. 2019;10(21):2022.31007845
  • Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 2007;7(9):2835–2842. doi:10.1021/nl071463717718587
  • Abdullah O, Usman Minhas M, Ahmad M, Ahmad S, Ahmad A. Synthesis of hydrogels for combinatorial delivery of 5-fluorouracil and leucovorin calcium in colon cancer: optimization, in vitro characterization and its toxicological evaluation. Polym Bull. 2018.
  • Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Microsphere design for the colonic delivery of 5-fluorouracil. J Control Release. 2003;90(3):313–322. doi:10.1016/S0168-3659(03)00195-012880698
  • Illangakoon UE, Yu D-G, Ahmad BS, Chatterton NP, Williams GR. 5-fluorouracil loaded eudragit fibers prepared by electrospinning. Int J Pharm. 2015;495(2):895–902. doi:10.1016/j.ijpharm.2015.09.04426410755
  • Panigrahy RN, Panda SK, Veerareddy PR. Formulation and evaluation of stomach-specific novel gastro-retentive formulations of 5-fluorouracil for targeting gastric cancer. Int J Pharm Sci Rev Res. 2018;9(9):3795–3803.
  • Khalaf AI, El Nashar DE, Helaly FM, Soliman A. Evaluation of controlled release PVC/PEG polymeric films containing 5-fluorouracil for long-term antitumor. Polym Bull. 2018.
  • Dev RK, Bali V, Pathak K. Novel microbially triggered colon specific delivery system of 5-fluorouracil: statistical optimization, in vitro, in vivo, cytotoxic and stability assessment. Int J Pharm. 2011;411(1–2):142–151. doi:10.1016/j.ijpharm.2011.03.05721463667
  • Parvizikhosroshahi S, Can HK. Synthesis and characterization of novel polymer-drug conjugate based on the anhydride containing copolymer as a potential method for drug carrier. J Macromol Sci A. 2018;55(2):192–204. doi:10.1080/10601325.2017.1410064
  • Jin Q, Mitschang F, Agarwal S. Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules. 2011;12(10):3684–3691. doi:10.1021/bm200912521863834
  • Céspedes MV, Unzueta U, Aviñó A, et al. Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Mol Med. 2018;10(10). doi:10.15252/emmm.201708772.
  • Liu H, Zang C, Emde A, et al. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur J Pharmacol. 2008;591(1–3):43–51. doi:10.1016/j.ejphar.2008.06.02618588872
  • Kaplan SA, McConnell JD, Roehrborn CG, et al. Combination therapy with doxazosin and finasteride for benign prostatic hyperplasia in patients with lower urinary tract symptoms and a baseline total prostate volume of 25 mL or greater. J Urol. 2006;175(1):217–220. doi:10.1016/S0022-5347(05)00041-816406915
  • Wu X, He C, Wu Y, Chen X. Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials. 2016;75:148–162. doi:10.1016/j.biomaterials.2015.10.01626497429
  • Ren Y, Kang C-S, Yuan X-B, et al. Co-delivery of as-miR-21 and 5-FU by poly (amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed. 2010;21(3):303–314. doi:10.1163/156856209X41582820178687
  • Feng Y, Gao Y, Wang D, Xu Z, Sun W, Ren P. Autophagy inhibitor (LY294002) and 5-fluorouracil (5-FU) combination-based nanoliposome for enhanced efficacy against esophageal squamous cell carcinoma. Nanoscale Res Lett. 2018;13(1):325. doi:10.1186/s11671-018-2716-x30328537
  • Li L, Gu W, Chen J, Chen W, Xu ZP. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials. 2014;35(10):3331–3339. doi:10.1016/j.biomaterials.2013.12.09524456604
  • Drbohlavova J, Chomoucka J, Adam V, et al. Nanocarriers for anticancer drugs-new trends in nanomedicine. Curr Drug Metab. 2013;14(5):547–564. doi:10.2174/138920021131405000523687925