423
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Effects of TiO2-Coated Stainless Steel Orthodontic Wires on Streptococcus mutans Bacteria: A Clinical Study

, , ORCID Icon, , , & ORCID Icon show all
Pages 8759-8766 | Published online: 10 Nov 2020

References

  • Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod. 1982;81(2):93–98. doi:10.1016/0002-9416(82)90032-X6758594
  • Rosenbloom RG, Tinanoff N. Salivary Streptococcus mutans levels in patients before, during, and after orthodontic treatment. Am J Orthod Dentofacial Orthop. 1991;100(1):35–37. doi:10.1016/0889-5406(91)70046-Y2069145
  • Shah AG, Shetty PC, Ramachandr C, Bhat NS, Laxmikanth SM. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus. Angle Orthod. 2011;81(6):1028–1035. doi:10.2319/021111-101.122007663
  • Mahmoudzadeh M, Alijani S, Soufi LR, Farhadian M, Namdar F, Karami S. Effect of CO2 laser on the prevention of white spot lesions during fixed orthodontic treatment: a randomized clinical trial. Turk J Orthod. 2019;32(3):165. doi:10.5152/TurkJOrthod.2019.1805231565692
  • Eliades T, Eliades G, Brantley WA. Microbial attachment on orthodontic appliances: I. Wettability and early pellicle formation on bracket materials. Am J Orthod Dentofacial Orthop. 1995;108(4):351–360.7572846
  • Anhoury P, Nathanson D, Hughes CV, Socransky S, Feres M, Chou LL.Microbial profile on metallic and ceramic bracket materials. Angle Orthod. 2002;72(4):338–343.12169034
  • Liu Y, Xu Y, Song Q, et al. Anti-biofilm activities from Bergenia crassifolia leaves against Streptococcus mutans. Front Microbiol. 2017;8(1738):1–10. doi:10.3389/fmicb.2017.0173828197127
  • Schwaninger B, Vickers-Schwaninger N. Developing an effective oral hygiene program for the orthodontic patient: review, rationale, and recommendations. Am J Orthod Dentofacial Orthop. 1979;75(4):447–452. doi:10.1016/0002-9416(79)90167-2
  • Liqiang J, Xiaojun S, Weimin C, Zili X, Yaoguo D, Honggang F. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. J Phys Chem Solids. 2003;64(4):615–623. doi:10.1016/S0022-3697(02)00362-1
  • Kachoei M, Nourian A, Divband B, Kachoei Z, Shirazi S. Zinc-oxide nanocoating for improvement of the antibacterial and frictional behavior of nickel-titanium alloy. Nanomedicine. 2016;11(19):2511–2527. doi:10.2217/nnm-2016-017127623286
  • Shah PK, Sharma P, Goje SK. Comparative evaluation of frictional resistance of silver-coated stainless steel wires with uncoated stainless steel wires: an in vitro study. Contemp Clin Dent. 2020;9(2):331–336.
  • Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys. 2005;44(12):8269–8285. doi:10.1143/JJAP.44.8269
  • Chun MJ, Shim E, Kho EH, et al. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod. 2007;77(3):483–488. doi:10.2319/0003-3219(2007)077[0483:SMOOWW]2.0.CO;217465657
  • Xiao G, Zhang X, Zhao Y, Su H, Tan T. The behavior of active bactericidal and antifungal coating under visible light irradiation. App Surf Sci. 2014;292:756–763. doi:10.1016/j.apsusc.2013.12.044
  • Fujishima A, Nakata K, Ochiai T, Manivannan A, Tryk DA. Recent aspects of photocatalytic technologies for solar fuels, self-cleaning, and environmental cleanup. Electrochem Soc Interface. 2013;22(2):51–56. doi:10.1149/2.F06132if
  • Visai L, De Nardo L, Punta C, et al. Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs. 2011;34(9):929–946. doi:10.5301/ijao.500005022094576
  • Fatani EJ, Almutairi HH, Alharbi AO, et al. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microb Pathogenesis. 2017;112:190–194. doi:10.1016/j.micpath.2017.09.052
  • Prince V, Agrawal J, Agrawal M, et al. Evaluation of photocatalytic titanium oxide surface modified stainless steel and nickel-titanium orthodontic wires for its antiadherent and antibacterial properties-an in vitro study. Int J Sci Study. 2014;4(12):132–136.
  • Ghasemi T, Arash V, Rabiee SM, Rajabnia R, Pourzare A, Rakhshan V. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study. Microsc Res Techniq. 2017;80(6):599–607. doi:10.1002/jemt.22835
  • Bakhtiari S, Toosi P, Samadi S, Bakhshi M. Assessment of uric acid level in the saliva of patients with oral lichen planus. Med Princ Pract. 2017;26(1):57–60. doi:10.1159/00045213327694755
  • Kantorski KZ, Scotti R, Valandro LF, Bottino MA, Koga-Ito CY, Jorge AO. Surface roughness and bacterial adherence to resin composites and ceramics. Oral Hlth Prev Dent. 2009;7(1):29–32.
  • Jinhui Z, Si L, Long C, Yi P, Shuangchun Y. The progress of TiO2 photocatalyst coating. IOSR-JEN. 2012;2(8):50–53. doi:10.9790/3021-02855053
  • Chhattani S, Shetty PC, Laxmikant SM, Ramachandra CS. In vitro assessment of photocatalytic titanium oxide surface-modified stainless steel and nickel titanium orthodontic wires for its antiadherent and antibacterial properties against Streptococcus mutans.J. Ind Orthod Soc. 2014;48:82–87. doi:10.1177/0974909820140202
  • Hench L. The Sol-Gel process. Chem Rev. 1990;90:33–37. doi:10.1021/cr00099a003
  • Richter K, Lorbeer C. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids. Chem Comm. 2015;51:114–117. doi:10.1039/C4CC05817H25383750
  • Amini F, Bahador A, Kiaee B, Kiaee G. The effect of the titanium nitride coating on bacterial adhesion on orthodontic stainless steel wires: in vivo study. Biosci Biotech Res Comm. 2017;10(1):28–33. doi:10.21786/bbrc/10.1/5
  • Özyildiz F, Uzel A, Hazar AS, Güden M, Ölmez S, Aras I. Photocatalytic antimicrobial effect of TiO_2 anatase thin-film-coated orthodontic arch wires on 3 oral pathogens. Turk J Biol. 2014;38(2):289–295.
  • Lin X, Li J, Ma S, et al. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One. 2014;9(10):e110247. doi:10.1371/journal.pone.011024725310452
  • Heringa MB, Geraets L, van Eijkeren JC, Vandebriel RJ, de Jong WH, Oomen AG. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology. 2016;10(10):1515–1525. doi:10.1080/17435390.2016.123811327680428
  • Hashemi E, Mahdavi H, Khezri J, Razi F, Shamsara M, Farmany A. Enhanced gene delivery in bacterial and mammalian cells using pegylated calcium doped magnetic nanograin. Int J Nanomedicine. 2019;14:9879–9891. doi:10.2147/IJN.S22839631908446