393
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Extraction, Purification, and Characterization of Polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and Utilization of Polysaccharides in Nanocarrier Synthesis

ORCID Icon, , , , , , ORCID Icon & show all
Pages 7097-7115 | Published online: 25 Sep 2020

References

  • Zheng Y, Monty J, Linhard RJ. Polysaccharide-based nanocomposites and their applications. Carbohydr Res. 2015;405:23–32. doi:10.1016/j.carres.2014.07.01625498200
  • Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design A review. J Saudi Chem Soc. 2014;18(2):85–99. doi:10.1016/j.jscs.2012.12.009
  • Samrot AV, Akanksha, Jahnavi T, et al. Chelators influenced synthesis of chitosan-carboxymethyl cellulose microparticles for controlled drug delivery. Appl Nanosci. 2016;6:1219. doi:10.1007/s13204-016-0536-9
  • Samrot AV, Suvedhaa B, Sahithya CS, Madankumar A. Purification and utilization of gum from Terminalia catappa L. for synthesis of curcumin loaded nanoparticle and its in vitro bioactivity studies. J Clust Sci. 2018;29(6):989–1002. doi:10.1007/s10876-018-1412-4
  • Sruthi PD, Sahithya CS, Justin C, et al. Utilization of chemically synthesized superparamagnetic iron oxide nanoparticles in drug delivery, imaging and heavy metal removal. J Clust Sci. 2018. doi:10.1007/s10876-018-1454-7
  • Justin C, Philip SA, Samrot AV. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl Nanosci. 2018. doi:10.1007/s13204-017-0583-x
  • Raji P, Samrot AV, Keerthana D, Karishma S. Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J Clust Sci. doi:10.1007/s10876-019-01547-2
  • Samrot AV, Angalene JLA, Roshini SM, et al. Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier. Int J Biol Macromol. 2019;140:393–400. doi:10.1016/j.ijbiomac.2019.08.12131425761
  • Samrot AV, Angalene JLA, Roshini SM, et al. Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles. J Clust Sci. 2019;30:1599–1610. doi:10.1007/s10876-019-01602-y
  • Samrot AV, Sahithya CS, Selvarani AJ, Pachiyappan S, Kumar SS. Surface-engineered superparamagnetic iron oxide nanoparticles for chromium removal. Int J Nanomed. 2019;2019:8105–8119.
  • Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;3702518. doi:10.1155/2019/3702518
  • Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A. Polymer coated gold nanoparticle–protein agglomerates as nanocarriers for hydrophobic drug delivery. J Mater Chem B. 2014;2(38):6472–6477. doi:10.1039/c4tb00800f32261808
  • Kanwal Z, Raza MA, Riaz S, et al. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. R Soc Open Sci. 2019;6(5):182135. doi:10.1098/rsos.18213531218038
  • Daglar B, Ozgur E, Corman ME, Uzun L, Demirel GB. Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv. 2014;4(89):48639–48659. doi:10.1039/c4ra06406b
  • Amin MCIM, Butt AM, Amjad MW, Kesharwani P. Polymeric micelles for drug targeting and delivery. Nanotechnology-Based Approaches Targeting Delivery Drugs Genes. 2017;167–202. doi:10.1016/b978-0-12-809717-5.00006-3
  • Suhail M, Rosenholm JM, Minhas MU, et al. Nanogels as drug delivery systems: a comprehensive overview. Ther Deliv. 2019;10:697–717. doi:10.4155/tde-2019-001031789106
  • Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017;12:7291–7309. doi:10.2147/IJN.S146315
  • Khodabandehloo H, Zahednasab H, Hafez AA. Nanocarriers usage for drug delivery in cancer therapy. Iran J Cancer Prev. 2016;9(2):e3966.27482328
  • Ayeldeen MK, Negm AM, Sawwaf MA. Evaluating the physical characteristics of biopolymer/soil mixtures. Arab J Geosci. 2016;9:371. doi:10.1007/s12517-016-2366-1
  • Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res. 2015;9(9):ZE21–ZE25. doi:10.7860/JCDR/2015/13907.656526501034
  • Suchithra BG. Plant-derived bioadhesives for wound dressing and drug delivery system. Fitoterapia. 2015;137:104241.
  • Granzotto C, Arslanoglu J, Rolando C, Tokarski C. Plant gum identification in historic artworks. Scientific. 2017;7.
  • Mirhosseini H, Amid BT. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int. 2012;46(1):387–398. doi:10.1016/j.foodres.2011.11.017
  • Maiden JH. The gums, resins and other vegetable exudation of Australia. J Proc R Soc N S W. 1901;35:161–212.
  • Abdel-Sattar E, Monem ARA, Ezzat SM, El-Halawany AM, Mouneir SM. Chemical and biological investigation of Araucaria heterophylla Salisb. Resin. Zeitschrift Fur Naturforschung C. 2009;64(1112):819–823. doi:10.1515/znc-2009-11-1211
  • Henciya S, Seturaman P, Jamesa AR, et al. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa). J Food Drug Anal. 2017;25(1):187–196. doi:10.1016/j.jfda.2016.11.00128911536
  • Zou P, Yang X, Huang W, et al. Characterization and bioactivity of polysaccharides obtained from pine cones of Pinus koraiensis by graded ethanol precipitation. Molecules. 2013;18:9933–9948. doi:10.3390/molecules1808993323966080
  • Wasiak I, Kulikowska A, Janczewska M, et al. Dextran nanoparticle synthesis and properties. PLoS One. 2016;11(1):e0146237. doi:10.1371/journal.pone.014623726752182
  • Jiang Y, Zi W, Pei Z, Liu S. Characterization of polysaccharides and their antioxidant properties from Plumula nelumbinis. Saudi Pharm J. 2018;26(5):656–664. doi:10.1016/j.jsps.2018.02.02629989035
  • Jain VM, Karibasappa GN, Dodamani AS, Mali GV. Estimating the carbohydrate content of various forms of tobacco by phenol-sulfuric acid method. J Edu Health Promot. 2017;6:90. doi:10.4103/jehp.jehp_41_17
  • Raguraman V, Abraham SL, Jyotsna J, et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. Carbohydr Polym. 2019;203:441–449. doi:10.1016/j.carbpol.2018.09.05630318233
  • Shubha HS, Hiremath RS. Evaluation of antimicrobial activity of rasaka bhasma. Ayu. 2010;31(2):260–262. doi:10.4103/0974-8520.7241222131722
  • Daly SM, Sturge CR, Greenberg DE. Inhibition of bacterial growth by peptide-conjugated morpholino oligomers. Methods Mol Biol. 2017;1565:115–122.28364238
  • Shen Q, Zhang B, Xu R, Wang Y, Ding X, Li P. Antioxidant activity in vitro of the selenium- contained protein from the Se- enriched Bifidobacterium animalis 01. Anaerobe. 2010;16(4):380–386. doi:10.1016/j.anaerobe.2010.06.00620601030
  • Gomez-Ballesteros M, Andres-Guerrero V, Parra FJ, et al. Amphiphilic acrylic nanoparticles containing the poloxamer star bayfit® 10WF15 as ophthalmic drug carriers. Polymers. 2019;11(7):1213. doi:10.3390/polym11071213
  • Kaijanen L, Paakkunainen M, Pietarinen S, Jernstrom E, Reinikainen S. Ultraviolet detection of monosaccharides: multiple wavelength strategy to evaluate results after capillary zone electrophoretic separation. Int J Electrochem. 2015;10:2950–2961.
  • Munajad A, Subroto C. Suwarno. Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies. 2018;11(364):5–12.
  • Anderson DMW, Munro AC. An analytical study of gum exudates from the genus Araucaria jussieu (gymnospermae). Carbohydr Res. 1969;11:43–51. doi:10.1016/S0008-6215(00)80640-0
  • Ruiz-Matute AI, Hernández-Hernández O, Rodríguez-Sánchez S, Sanz ML, Martínez-Castro I. Derivatization of carbohydrates for GC and GC–MS analyses. J Chromatogr B. 2011;879:1226–1240. doi:10.1016/j.jchromb.2010.11.013
  • Poinsot V, Carpéné MA, Couderc F. Coupled mass spectrometric strategies for the determination of carbohydrates at very low concentrations: the case of polysaccharides involved in the molecular dialogue between plants and rhizobia. Complex World Polysaccharides. 2012.
  • Ye F, Yan X, Xu J, Chen H. Determination of Aldoses and Ketoses by GC-MS using Differential derivatisation. Phytochem Anal. 2006;17:379–383. doi:10.1002/pca.92817144244
  • Haghgoo R, Mehran M, Afshari E, Zadeh HF, Ahmadvand M. Antibacterial effects of different concentrations of Althaea officinalis root extract versus 0.2% chlorhexidine and penicillin on streptococcus mutans and lactobacillus (in vitro). J Int Soc Prevent Communit Dent. 2017;7(4):180–185.
  • Gingichashvili S, Duanis-Assaf D, Shemesh M, Featherstone JDB, Feuerstein O, Steinberg D. Bacillus subtilis biofilm development a computerized study of morphology and kinetics. Front Microbiol. 2017. doi:10.3389/fmicb.2017.02072
  • Thomas R, Brooks T. Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens. J Med Microbiol. 2004;53:833–840. doi:10.1099/jmm.0.45643-015314189
  • Grishin A, Karyagina AS, Tiganova IG, et al. Inhibition of Pseudomonas aeruginosa biofilm formation by LecA-binding polysaccharides. Int J Antimicrob Agents. 2013;42(5):471–472. doi:10.1016/j.ijantimicag.2013.07.00323988717
  • Glasenapp Y, Catto C, Villa F, Saracchi M, Cappitelli F, Papenbrock J. Promoting beneficial and inhibiting undesirable biofilm formation with mangrove extracts. Int J Mol Sci. 2019;20(14):3549. doi:10.3390/ijms20143549
  • Song H, He M, Gu C, et al. Extraction optimization, purification, antioxidant activity, and preliminary structural characterization of crude polysaccharide from an arctic chlorella sp. Polymers. 2018;10(3):292.
  • Dodi G, Pala A, Barbu E, et al. Carboxymethyl guar gum nanoparticles for drug delivery applications: preparation and preliminary in-vitro investigations. Mater Sci Eng C. 2016;63:628–636. doi:10.1016/j.msec.2016.03.032
  • Manna PJ, Mitra T, Pramanik N, Kavitha V, Gnanamani A, Kundu PP. Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. Int J Biol Macromol. 2015;75:437–446. doi:10.1016/j.ijbiomac.2015.01.04725661877
  • Chin SF, Mohd Yazid SNA, Pang SC. Preparation and characterization of starch nanoparticles for controlled release of curcumin. Int J Polym Sci. 2014;2014:1–8. doi:10.1155/2014/340121
  • Ishola MM, Ylitervo P, Taherzadeh MJ. Co-utilization of glucose and xylose for enhanced lignocellulosic ethanol production with reverse membrane bioreactors. Membranes. 2015;5(4):844–856. doi:10.3390/membranes504084426633530
  • Athira GK, Jyothi AN. Preparation and characterization of curcumin loaded cassava starch nanoparticles with improved cellular absorption. Int j Pharm Pharm Sci. 2014;6(10):171–176.
  • Bashir S, Teo YY, Ramesh S, Ramesh K. Physico-chemical characterization of pH-sensitive N -Succinyl chitosan- g -poly (acrylamide- co -acrylic acid) hydrogels and in vitro drug release studies. Polym Degrad. 2017;139:38–54. doi:10.1016/j.polymdegradstab.2017.03.014
  • Hu X, Wang Y, Zhang L, Xu M. Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols. Food Chem. 2019;125632. doi:10.1016/j.foodchem.2019.12563231606634
  • Hu X, Wang Y, Zhang L, Xu M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym. 2020;234:115920. doi:10.1016/j.carbpol.2020.11592032070539
  • Bashir S, Teo YY, Ramesh S, Ramesh K. Synthesis and characterization of karaya gum-g- poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin. Polymer. 2018;147:108–120. doi:10.1016/j.polymer.2018.05.071
  • Samrot AV, Angalene JLA, Roshini SM, et al. Purification, characterization and exploitation of Azadirachta indica gum for the production of drug loaded nanocarrier. Mater Res Express. 2020;7:055007. doi:10.1088/2053-1591/ab8b16