186
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Multiscale Selectivity and in vivo Biodistribution of NRP-1-Targeted Theranostic AGuIX Nanoparticles for PDT of Glioblastoma

, ORCID Icon, , ORCID Icon, , , ORCID Icon, , ORCID Icon, , ORCID Icon, , , & show all
Pages 8739-8758 | Published online: 09 Nov 2020

References

  • Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol. 2013;15(1):4–27. doi:10.1093/neuonc/nos27323136223
  • Stupp R, Weller M, Belanger K, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;10.
  • Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chinese Journal of Cancer. 2014;33(1):16–24. doi:10.5732/cjc.013.1021724384237
  • Wen PY. Malignant Gliomas in Adults. N Engl J Med. 2008;16.
  • de Robles P, Fiest KM, Frolkis AD, et al. The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis. Neuro Oncol. 2015;17(6):776–783. doi:10.1093/neuonc/nou28325313193
  • Pinel S, Thomas N, Boura C, Barberi-Heyob M. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Adv Drug Deliv Rev. 2019;138:344–357. doi:10.1016/j.addr.2018.10.01330414495
  • Verry C, Sancey L, Dufort S, et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a Phase I study protocol. BMJ Open. 2019;9(2):e023591. doi:10.1136/bmjopen-2018-023591
  • Radiotherapy of Multiple Brain Metastases Using AGuIX® (NANORAD2). https://clinicaltrials.gov/ct2/show/NCT03818386. Accessed 1020, 2020.
  • Kotb S, Piraquive J, Lamberton F, et al. Safety Evaluation and Imaging Properties of Gadolinium-Based Nanoparticles in nonhuman primates. Sci Rep. 2016:6. doi:10.1038/srep3505328442741
  • Evaluating AGuIX® Nanoparticles in Combination With Stereotactic Radiation for Brain Metastases (NANOSTEREO) https://clinicaltrials.gov/ct2/show/NCT04094077?term=NCT04094077&draw=2&rank=1. Accessed 1020, 2020.
  • Lux F, Tran VL, Thomas E, et al. AGuIX ® from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. The British Journal of Radiology. 2018:20180365. doi:10.1259/bjr.2018036530226413
  • Maeda H, Sano Y, Takeshita J, et al. A pharmacokinetic simulation model for chemotherapy of brain tumor with an antitumor protein antibiotic, neocarzinostatin: theoretical considerations behind a two-compartment model for continuous infusion via an internal carotid artery. Cancer Chemother Pharmacol. 1981;5(4):243–249. doi:10.1007/BF004343926455212
  • Sparreboom A. Comparative Preclinical and Clinical Pharmacokinetics of a Cremophor-Free, Nanoparticle Albumin-Bound Paclitaxel (ABI-007) and Paclitaxel Formulated in Cremophor (Taxol). Clin Cancer Res. 2005;11(11):4136–4143. doi:10.1158/1078-0432.CCR-04-229115930349
  • Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6. doi:10.1016/j.addr.2015.01.00225579058
  • Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles. Theranostics. 2020;10(3):1319–1331. doi:10.7150/thno.3754331938067
  • Sun S, Lei Y, Li Q, et al. Neuropilin-1 is a glial cell line-derived neurotrophic factor receptor in glioblastoma. Oncotarget. 2017;8(43):74019–74035. doi:10.18632/oncotarget.1863029088765
  • Hamerlik P, Lathia JD, Rasmussen R, et al. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 2012;209(3):507–520. doi:10.1084/jem.2011142422393126
  • Caponegro MD, Moffitt RA, Tsirka SE. Expression of neuropilin-1 is linked to glioma associated microglia and macrophages and correlates with unfavorable prognosis in high grade gliomas. Oncotarget. 2018;9(86):35655–35665. doi:10.18632/oncotarget.2627330479695
  • Lyons M, Phang I, Eljamel S. The effects of PDT in primary malignant brain tumours could be improved by intraoperative radiotherapy. Photodiagnosis Photodyn Ther. 2012;9(1):40–45. doi:10.1016/j.pdpdt.2011.12.00122369727
  • Muragaki Y, Akimoto J, Maruyama T, et al. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. Journal of Neurosurgery. 2013;119(4):845–852. doi:10.3171/2013.7.JNS1341523952800
  • Shimizu K, Nitta M, Komori T, et al. Intraoperative Photodynamic Diagnosis Using Talaporfin Sodium Simultaneously Applied for Photodynamic Therapy against Malignant Glioma: A Prospective Clinical Study. Front Neurol. 2018;9:24. doi:10.3389/fneur.2018.0002429441040
  • Dupont C, Vermandel M. INtraoperative photoDYnamic Therapy for GliOblastomas: study Protocol for a Phase. Clin Trial. 2018;6.
  • Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies. Cancer Treat Rev. 2014;40(2):229–241. doi:10.1016/j.ctrv.2012.07.00422858248
  • Calixto GMF, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules. 2016;21(3):3. doi:10.3390/molecules21030342
  • Toussaint M, Pinel S, Auger F, et al. Proton MR Spectroscopy and Diffusion MR Imaging Monitoring to Predict Tumor Response to Interstitial Photodynamic Therapy for Glioblastoma. Theranostics. 2017;7(2):436–451. doi:10.7150/thno.1721828255341
  • Bechet D, Auger F, Couleaud P, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine. 2015;11(3):657–670. doi:10.1016/j.nano.2014.12.00725645959
  • Thomas E, Colombeau L, Gries M, et al. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. Int J Nanomedicine. 2017;12:7075–7088. doi:10.2147/IJN.S14155929026302
  • Youssef Z, Yesmurzayeva N, Larue L, et al. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. Journal of Clinical Medicine. 2019;8(12):2205. doi:10.3390/jcm8122205
  • Kamarulzaman EE, Vanderesse R, Gazzali AM, et al. Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting neuropilin-1 for anticancer application. J Biomol Struct Dyn. 2017;35(1):26–45. doi:10.1080/07391102.2015.113119626766582
  • Kamarulzaman EE, Mohd Gazzali A, Acherar S, et al. New Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1 for Anti-Vascular Targeted Photodynamic Therapy. Int J Mol Sci. 2015;16(10):24059–24080. doi:10.3390/ijms16102405926473840
  • Bouzerar R, Chaarani B, Gondry-Jouet C, Zmudka J, Balédent O. Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes. Neuroradiology. 2013;55(12):1447–1454. doi:10.1007/s00234-013-1290-224150596
  • Truillet C, Lux F, Tillement O, Dugourd P, Antoine R. Coupling of HPLC with Electrospray Ionization Mass Spectrometry for Studying the Aging of Ultrasmall Multifunctional Gadolinium-Based Silica Nanoparticles. Anal Chem. 2013;85(21):10440–10447. doi:10.1021/ac402429p24160370
  • Zhou Y, Dai Z. New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy. Chem Asian J. 2018;13(22):3333–3340. doi:10.1002/asia.20180014929441706
  • Thomas N, Bechet D, Becuwe P, et al. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. J Photochem Photobiol B. 2009;96(2):101–108. doi:10.1016/j.jphotobiol.2009.04.00819464192
  • Tirand L, Frochot C, Vanderesse R, et al. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J Controlled Release. 2006;111(1–2):153–164. doi:10.1016/j.jconrel.2005.11.017
  • Bechet D, Tirand L, Faivre B, et al. Neuropilin-1 Targeting Photosensitization-Induced Early Stages of Thrombosis via Tissue Factor Release. Pharm Res. 2010;27(3):468–479. doi:10.1007/s11095-009-0035-820087632
  • Bantz C, Koshkina O, Lang T, et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol. 2014;5:1774–1786. doi:10.3762/bjnano.5.18825383289
  • Millart E, Lesieur S, Faivre V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin Drug Deliv. 2018;15(5):523–540. doi:10.1080/17425247.2018.145380429543082
  • Sancey L, Kotb S, Truillet C, et al. Long-Term in Vivo Clearance of Gadolinium-Based AGuIX Nanoparticles and Their Biocompatibility after Systemic Injection. ACS Nano. 2015;9(3):2477–2488. doi:10.1021/acsnano.5b0055225703068
  • Pasquini L, Napolitano A, Visconti E, et al. Gadolinium-Based Contrast Agent-Related Toxicities. CNS Drugs. 2018;32(3):229–240. doi:10.1007/s40263-018-0500-129508245
  • Le Duc G, Roux S, Paruta-Tuarez A, et al. Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol. 2014;5(1):1. doi:10.1186/s12645-014-0004-826561509
  • Mignot A, Truillet C, Lux F, et al. A Top-Down Synthesis Route to Ultrasmall Multifunctional Gd-Based Silica Nanoparticles for Theranostic Applications. Chem Eur J. 2013;19(19):6122–6136. doi:10.1002/chem.20120300323512788
  • Tissue expression of NRP1 - Summary - The Human Protein Atlas. Accessed 71, 2020 https://www.proteinatlas.org/ENSG00000099250-NRP1/tissue.
  • Richeri A, Vierci G, Martínez GF, Latorre MP, Chalar C, Brauer MM. Neuropilin-1 receptor in the rapid and selective estrogen-induced neurovascular remodeling of rat uterus. Cell Tissue Res. 2020. doi:10.1007/s00441-020-03196-8
  • Guan M, Zhou Y, Liu S, et al. Photo-triggered gadofullerene: enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses. Biomaterials. 2019;213:119218. doi:10.1016/j.biomaterials.2019.05.02931136911
  • Czabanka M, Parmaksiz G, Bayerl SH, et al. Microvascular biodistribution of L19-SIP in angiogenesis targeting strategies. Eur J Cancer. 2011;47(8):1276–1284. doi:10.1016/j.ejca.2011.02.00121396810
  • Acker G, Palumbo A, Neri D, Vajkoczy P, Czabanka M. F8-SIP mediated targeted photodynamic therapy leads to microvascular dysfunction and reduced glioma growth. J Neurooncol. 2016;129(1):33–38. doi:10.1007/s11060-016-2143-827188647
  • Denysenko T, Gennero L, Roos MA, et al. Glioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies. Cell Biochem Funct. 2010;28(5):343–351. doi:10.1002/cbf.166620535838
  • Miyauchi JT, Caponegro MD, Chen D, Choi MK, Li M, Tsirka SE. Deletion of Neuropilin 1 from Microglia or Bone Marrow–Derived Macrophages Slows Glioma Progression. Cancer Res. 2018;78(3):685–694. doi:10.1158/0008-5472.CAN-17-143529097606
  • Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–1272. doi:10.1038/nm.333724056773
  • Jackson CM, Lim M, Drake CG. Immunotherapy for Brain Cancer: recent Progress and Future Promise. Clin Cancer Res. 2014;20(14):3651–3659. doi:10.1158/1078-0432.CCR-13-205724771646
  • Miyauchi JT, Chen D, Choi M, et al. Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget. 2016;7(9):9. doi:10.18632/oncotarget.6877